On a fluid-structure interaction problem for plaque growth

被引:3
|
作者
Abels, Helmut [1 ]
Liu, Yadong [1 ]
机构
[1] Univ Regensburg, Fak Math, D-93053 Regensburg, Germany
关键词
fluid-structure interaction; two-phase flow; growth; free boundary value problem; maximal regularity; Primary; Secondary; NAVIER-STOKES EQUATIONS; LOCAL STRONG SOLUTIONS; DATA GLOBAL EXISTENCE; WELL-POSEDNESS; SOBOLEV; SIMULATION; UNIQUENESS; EVOLUTION; SYSTEM; BESOV;
D O I
10.1088/1361-6544/aca5e1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a free-boundary fluid-structure interaction problem with growth, which arises from the plaque formation in blood vessels. The fluid is described by the incompressible Navier-Stokes equations, while the structure is considered as a viscoelastic incompressible neo-Hookean material. Moreover, the growth due to the biochemical process is taken into account. Applying the maximal regularity theory to a linearization of the equations, along with a deformation mapping, we prove the well-posedness of the full nonlinear problem via the contraction mapping principle.
引用
下载
收藏
页码:537 / 583
页数:47
相关论文
共 50 条
  • [1] On a fluid-structure interaction problem for plaque growth: cylindrical domain
    Abels, Helmut
    Liu, Yadong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 345 : 334 - 400
  • [2] MODELLING OF ATHEROSCLEROTIC PLAQUE GROWTH USING FLUID-STRUCTURE INTERACTION
    Chen, Colin Xu
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 93 (01) : 170 - 172
  • [3] On a fluid-structure interaction problem
    Flori, F
    Orenga, P
    TRENDS IN APPLICATIONS OF MATHEMATICS TO MECHANICS, 2000, 106 : 293 - 305
  • [4] Short-time existence of a quasi-stationary fluid-structure interaction problem for plaque growth
    Abels, Helmut
    Liu, Yadong
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [5] A Fluid-Structure Interaction Index of Coronary Plaque Rupture
    Ilegbusi, Olusegun
    Valaski-Tuema, Eric
    BIOMEDICAL SIMULATION, PROCEEDINGS, 2010, 5958 : 98 - 107
  • [6] Analysis of a linear fluid-structure interaction problem
    Du, Q
    Gunzberger, MD
    Hou, LS
    Lee, J
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (03) : 633 - 650
  • [7] Existence for an unsteady fluid-structure interaction problem
    Grandmont, C
    Maday, Y
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03): : 609 - 636
  • [8] Implementation of a Parallel Fluid-Structure Interaction Problem
    Ivanyi, P.
    Topping, B. H. V.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING FOR ENGINEERING, 2009, (90): : 653 - 682
  • [9] An exact solution of a fluid-structure interaction problem
    Marusic-Paloka, Eduard
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (12):
  • [10] Numerical analysis of a linearised fluid-structure interaction problem
    Le Tallec P.
    Mani S.
    Numerische Mathematik, 2000, 87 (2) : 317 - 354