On the Local Existence of Solutions to the Fluid-Structure Interaction Problem with a Free Interface

被引:0
|
作者
Kukavica, Igor [1 ]
Li, Linfeng [2 ]
Tuffaha, Amjad [3 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2024年 / 90卷 / 03期
关键词
Fluid-structure interaction; Local existence; Navier-Stokes equations; Wave equation; Trace regularity; NAVIER-STOKES EQUATIONS; BOUNDARY-VALUE-PROBLEMS; WELL-POSEDNESS; WEAK SOLUTIONS; LAME SYSTEM; ELASTIC STRUCTURE; FEEDBACK-CONTROL; RIGID BODIES; REGULARITY; MOTION;
D O I
10.1007/s00245-024-10195-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address a system of equations modeling an incompressible fluid interacting with an elastic body. We prove the local existence when the initial velocity belongs to the space H1.5+& varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{1.5+\epsilon }$$\end{document} and the initial structure velocity is in H1+& varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{1+\epsilon }$$\end{document}, where & varepsilon;is an element of(0,1/20)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \in (0, 1/20)$$\end{document}.
引用
收藏
页数:31
相关论文
共 50 条