Impact of Various Erosive Environments on the Durability of POM Fiber-Reinforced Ultra-High-Performance Concrete

被引:0
|
作者
Dong, Jingliang [1 ]
Zong, Yingliang [1 ]
Shang, Xiaopeng [2 ]
Chen, Xiaolei [1 ]
Tu, Zhen [1 ]
Jiang, Ren [1 ]
Zhu, Zebing [1 ]
机构
[1] East China Jiaotong Univ, Sch Civil Engn & Architecture, Nanchang 330013, Peoples R China
[2] Shandong Urban Construct Vocat Coll, Jinan 250103, Peoples R China
基金
中国国家自然科学基金;
关键词
POM fiber; erosive environments; mass loss rate; strength degradation; microscopic analysis; FRACTURE-TOUGHNESS; STRENGTH; SYNERGY; HYFRC; SALT;
D O I
10.3390/buildings14124048
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To address the durability challenges faced by traditional concrete in marine environments, this study focuses on polyoxymethylene (POM) fiber-reinforced ultra-high-performance concrete (PFUHPC) and, for the first time, systematically investigates the inhibitory effects of POM fibers on microstructural degradation and mechanical performance deterioration of ultra-high-performance concrete under various erosive environments. The results indicated the following: (1) The mass loss rate and compressive strength degradation in PFUHPC under different erosive environments initially increased and then decreased, demonstrating that the inclusion of POM fibers delayed corrosion and significantly improved the durability and stability of the material's performance. (2) Compared to the natural environment, after 180 days of immersion in different erosive environments (seawater immersion, wet-dry cycles in seawater, chloride salt immersion, sulfate salt immersion, and complex salt immersion), the compressive strength degradations were observed to be 4.8%, 9.7%, 6.8%, 11.7%, and 10.7%. (3) Microscopic analysis after 180 days revealed that the main corrosion products were gypsum, ettringite, and Friedel's salt (calcium chloroaluminate). Under the environments of seawater immersion and cyclic wetting and drying, the low concentrations of chloride and sulfate ions resulted in fewer corrosion products and a denser matrix. The primary corrosion product under the chloride salt immersion was Friedel's salt, which led to surface cracking and microporosity, while under the sulfate immersion, gypsum and ettringite were predominant, resulting in more porous and loosely bound hydration products and more severe corrosions.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Ultra-high-performance fiber-reinforced concrete. Part IV: Durability properties, cost assessment, applications, and challenges
    Akeed, Mahmoud H.
    Qaidi, Shaker
    Ahmed, Hemn U.
    Faraj, Rabar H.
    Mohammed, Ahmed S.
    Emad, Wael
    Tayeh, Bassam A.
    Azevedo, Afonso R. G.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [42] Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure
    Park, Jung-Jun
    Yoo, Doo-Yeol
    Park, Gi-Joon
    Kim, Sung-Wook
    MATERIALS, 2017, 10 (02):
  • [43] Thermomechanical Hysteresis of Reinforced Concrete Beams Retrofitted with Carbon Fiber-Reinforced Polymer and Ultra-High-Performance Concrete
    Kim, Yail J.
    Bumadian, Ibrahim
    ACI STRUCTURAL JOURNAL, 2024, 121 (05) : 189 - 202
  • [44] Rehabilitation of overload-damaged reinforced concrete columns using ultra-high-performance fiber-reinforced concrete
    Alasmari, H. A.
    OPEN ENGINEERING, 2023, 13 (01):
  • [45] Performance of Fiber-Reinforced Ultra-High-Performance Concrete Incorporated with Microencapsulated Phase Change Materials
    Rady, Mahmoud
    Soliman, Ahmed M.
    FIBERS, 2023, 11 (11)
  • [46] Analytical Modeling of Ultra-High-Performance Fiber-Reinforced Concrete Behavior in Ribbed Plates
    Baby, Florent
    Marchand, Pierre
    Toutlemonde, Francois
    ACI STRUCTURAL JOURNAL, 2017, 114 (01) : 3 - 13
  • [47] Vitrified Clay for the Production of a Green Sustainable Ultra-High-Performance Fiber-Reinforced Concrete
    Munoz-Espinoza, Ana Luisa
    Lopez-Yepez, Lucio Guillermo
    Valdez-Aguilar, Jose Abelardo
    Juarez-Alvarado, Cesar Antonio
    Duran-Herrera, Alejandro
    MATERIALS, 2024, 17 (22)
  • [48] Bond behavior of GFRP and steel bars in ultra-high-performance fiber-reinforced concrete
    Yoo, Doo-Yeol
    Yoon, Young-Soo
    ADVANCED COMPOSITE MATERIALS, 2017, 26 (06) : 493 - 510
  • [49] Bond Behavior of Pretensioned Strand Embedded in Ultra-High-Performance Fiber-Reinforced Concrete
    Hyun-Oh Shin
    Seung-Jung Lee
    Doo-Yeol Yoo
    International Journal of Concrete Structures and Materials, 2018, 12
  • [50] Ultra-high-performance fiber-reinforced concrete. Part II: Hydration and microstructure
    Akeed, Mahmoud H.
    Qaidi, Shaker
    Ahmed, Hemn U.
    Faraj, Rabar H.
    Mohammed, Ahmed S.
    Emad, Wael
    Tayeh, Bassam A.
    Azevedo, Afonso R. G.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17