Impact of Various Erosive Environments on the Durability of POM Fiber-Reinforced Ultra-High-Performance Concrete

被引:0
|
作者
Dong, Jingliang [1 ]
Zong, Yingliang [1 ]
Shang, Xiaopeng [2 ]
Chen, Xiaolei [1 ]
Tu, Zhen [1 ]
Jiang, Ren [1 ]
Zhu, Zebing [1 ]
机构
[1] East China Jiaotong Univ, Sch Civil Engn & Architecture, Nanchang 330013, Peoples R China
[2] Shandong Urban Construct Vocat Coll, Jinan 250103, Peoples R China
基金
中国国家自然科学基金;
关键词
POM fiber; erosive environments; mass loss rate; strength degradation; microscopic analysis; FRACTURE-TOUGHNESS; STRENGTH; SYNERGY; HYFRC; SALT;
D O I
10.3390/buildings14124048
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To address the durability challenges faced by traditional concrete in marine environments, this study focuses on polyoxymethylene (POM) fiber-reinforced ultra-high-performance concrete (PFUHPC) and, for the first time, systematically investigates the inhibitory effects of POM fibers on microstructural degradation and mechanical performance deterioration of ultra-high-performance concrete under various erosive environments. The results indicated the following: (1) The mass loss rate and compressive strength degradation in PFUHPC under different erosive environments initially increased and then decreased, demonstrating that the inclusion of POM fibers delayed corrosion and significantly improved the durability and stability of the material's performance. (2) Compared to the natural environment, after 180 days of immersion in different erosive environments (seawater immersion, wet-dry cycles in seawater, chloride salt immersion, sulfate salt immersion, and complex salt immersion), the compressive strength degradations were observed to be 4.8%, 9.7%, 6.8%, 11.7%, and 10.7%. (3) Microscopic analysis after 180 days revealed that the main corrosion products were gypsum, ettringite, and Friedel's salt (calcium chloroaluminate). Under the environments of seawater immersion and cyclic wetting and drying, the low concentrations of chloride and sulfate ions resulted in fewer corrosion products and a denser matrix. The primary corrosion product under the chloride salt immersion was Friedel's salt, which led to surface cracking and microporosity, while under the sulfate immersion, gypsum and ettringite were predominant, resulting in more porous and loosely bound hydration products and more severe corrosions.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Evaluating fracture characteristics of ultra-high-performance fiber-reinforced concrete in flexure and tension with size impact
    Nguyen, Duy-Liem
    Le, Huy-Viet
    Vu, Thi-Bich-Nga
    Nguyen, Van-Thuan
    Tran, Ngoc-Thanh
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 382
  • [32] Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations
    Guo, Wei
    Fan, Wei
    Shao, Xudong
    Shen, Dongjie
    Chen, Baisheng
    COMPOSITE STRUCTURES, 2018, 185 : 307 - 326
  • [33] Dynamic fracture toughness of ultra-high-performance fiber-reinforced concrete under impact tensile loading
    Tuan Kiet Tran
    Ngoc Thanh Tran
    Duy-Liem Nguyen
    Dong Joo Kim
    Jun Kil Park
    Tri Thuong Ngo
    STRUCTURAL CONCRETE, 2021, 22 (03) : 1845 - 1860
  • [34] Assessing the Seismic Performance of Exterior Precast Concrete Joints with Ultra-High-Performance Fiber-Reinforced Concrete
    Seungki Kim
    Jinwon Shin
    Woosuk Kim
    International Journal of Concrete Structures and Materials, 18
  • [35] Assessing the Seismic Performance of Exterior Precast Concrete Joints with Ultra-High-Performance Fiber-Reinforced Concrete
    Kim, Seungki
    Shin, Jinwon
    Kim, Woosuk
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2024, 18 (01)
  • [36] Flexural behaviors of fiber-reinforced polymer fabric reinforced ultra-high-performance concrete panels
    Meng, Weina
    Khayat, Kamal Henri
    Bao, Yi
    CEMENT & CONCRETE COMPOSITES, 2018, 93 : 43 - 53
  • [37] Experimental Investigation of Composite Ultra-High-Performance Fiber-Reinforced Concrete and Conventional Concrete Members
    Habel, Katrin
    Denarie, Emmanuel
    Bruhwiler, Eugen
    ACI STRUCTURAL JOURNAL, 2007, 104 (01) : 93 - 101
  • [38] Shear Behavior of Concrete Walls Retrofitted with Ultra-High-Performance Fiber-Reinforced Concrete Jackets
    Franssen, Renaud
    Courard, Luc
    Mihaylov, Boyan, I
    ACI STRUCTURAL JOURNAL, 2021, 118 (05) : 149 - 160
  • [39] Abrasion resistance of milling steel fiber-reinforced ultra-high-performance concrete under various wearing conditions
    Wang, Hengchang
    Chen, Baixi
    Yang, Yibo
    Xia, Yinggan
    Xiao, Qifeng
    Liu, Shaokun
    Guo, Wenying
    MAGAZINE OF CONCRETE RESEARCH, 2023, 76 (13) : 696 - 706
  • [40] Time-Dependent Tension-Stiffening Mechanics of Fiber-Reinforced and Ultra-High-Performance Fiber-Reinforced Concrete
    Sturm, A. B.
    Visintin, P.
    Oehlers, D. J.
    Seracino, R.
    JOURNAL OF STRUCTURAL ENGINEERING, 2018, 144 (08)