Experimental Liouvillian exceptional points in a quantum system without Hamiltonian singularities

被引:1
|
作者
Abo, Shilan [1 ]
Tulewicz, Patrycja [1 ]
Bartkiewicz, Karol [1 ]
Ozdemir, Sahin K. [2 ]
Miranowicz, Adam [1 ]
机构
[1] Adam Mickiewicz Univ, Inst Spintron & Quantum Informat, Fac Phys, PL-61614 Pozna, Poland
[2] St Louis Univ, Dept Elect & Comp Engn, St. Louis, MO 63103 USA
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 12期
关键词
Liouvillian exceptional points; quantum process tomography; IBMQ; Hamiltonian exceptional points; PARITY-TIME SYMMETRY; DYNAMICS;
D O I
10.1088/1367-2630/ad98b6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hamiltonian exceptional points (HEPs) are spectral degeneracies of non-Hermitian Hamiltonians describing classical and semiclassical open systems with losses and/or gain. However, this definition overlooks the occurrence of quantum jumps in the evolution of open quantum systems. These quantum effects are properly accounted for by considering quantum Liouvillians and their exceptional points (LEPs). Specifically, an LEP corresponds to the coalescence of two or more eigenvalues and the corresponding eigenmatrices of a given Liouvillian at critical values of external parameters (Minganti et al 2019 Phys. Rev. A 100 062131). Here, we explicitly describe how standard quantum process tomography, which reveals the dynamics of a quantum system, can be readily applied to detect and characterize quantum LEPs of quantum non-Hermitian systems. We conducted experiments on an IBM quantum processor to implement a prototype model with one-, two-, and three qubits simulating the decay of a single qubit through competing channels, resulting in LEPs but not HEPs. Subsequently, we performed tomographic reconstruction of the corresponding experimental Liouvillian and its LEPs using both single- and two-qubit operations. This example underscores the efficacy of process tomography in tuning and observing LEPs even in the absence of HEPs.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points
    Li, Aodong
    Dong, Jianji
    Wang, Jian
    Cheng, Ziwei
    Ho, John S.
    Zhang, Dawei
    Wen, Jing
    Zhang, Xu-Lin
    Chan, C. T.
    Alu, Andrea
    Qiu, Cheng-Wei
    Chen, Lin
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [42] Towards quantum cosmology without singularities
    Behrndt, K.
    Burwick, T. T.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 52 (02):
  • [44] TOWARDS QUANTUM COSMOLOGY WITHOUT SINGULARITIES
    BEHRNDT, K
    BURWICK, TT
    PHYSICAL REVIEW D, 1995, 52 (02): : 1292 - 1295
  • [45] Experimental observation of exceptional points in coupled pendulums
    Even, Nicolas
    Nennig, Benoit
    Lefebvre, Gautier
    Perrey-Debain, Emmanuel
    JOURNAL OF SOUND AND VIBRATION, 2024, 575
  • [46] Virtual Exceptional Points in an Electromechanical System
    Renault, P.
    Yamaguchi, H.
    Mahboob, I
    PHYSICAL REVIEW APPLIED, 2019, 11 (02):
  • [47] The topology of the set of singularities for an integrable Hamiltonian system
    A. A. Oshemkov
    Doklady Mathematics, 2010, 82 : 777 - 779
  • [48] The Topology of the Set of Singularities for an Integrable Hamiltonian System
    Oshemkov, A. A.
    DOKLADY MATHEMATICS, 2010, 82 (02) : 777 - 779
  • [49] Experimental observation of the topological structure of exceptional points
    Dembowski, C
    Gräf, HD
    Harney, HL
    Heine, A
    Heiss, WD
    Rehfeld, H
    Richter, A
    PHYSICAL REVIEW LETTERS, 2001, 86 (05) : 787 - 790
  • [50] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
    张益玺
    张振涛
    杨震山
    魏晓志
    梁宝龙
    Chinese Physics B, 2024, 33 (06) : 223 - 229