Experimental Liouvillian exceptional points in a quantum system without Hamiltonian singularities

被引:1
|
作者
Abo, Shilan [1 ]
Tulewicz, Patrycja [1 ]
Bartkiewicz, Karol [1 ]
Ozdemir, Sahin K. [2 ]
Miranowicz, Adam [1 ]
机构
[1] Adam Mickiewicz Univ, Inst Spintron & Quantum Informat, Fac Phys, PL-61614 Pozna, Poland
[2] St Louis Univ, Dept Elect & Comp Engn, St. Louis, MO 63103 USA
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 12期
关键词
Liouvillian exceptional points; quantum process tomography; IBMQ; Hamiltonian exceptional points; PARITY-TIME SYMMETRY; DYNAMICS;
D O I
10.1088/1367-2630/ad98b6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hamiltonian exceptional points (HEPs) are spectral degeneracies of non-Hermitian Hamiltonians describing classical and semiclassical open systems with losses and/or gain. However, this definition overlooks the occurrence of quantum jumps in the evolution of open quantum systems. These quantum effects are properly accounted for by considering quantum Liouvillians and their exceptional points (LEPs). Specifically, an LEP corresponds to the coalescence of two or more eigenvalues and the corresponding eigenmatrices of a given Liouvillian at critical values of external parameters (Minganti et al 2019 Phys. Rev. A 100 062131). Here, we explicitly describe how standard quantum process tomography, which reveals the dynamics of a quantum system, can be readily applied to detect and characterize quantum LEPs of quantum non-Hermitian systems. We conducted experiments on an IBM quantum processor to implement a prototype model with one-, two-, and three qubits simulating the decay of a single qubit through competing channels, resulting in LEPs but not HEPs. Subsequently, we performed tomographic reconstruction of the corresponding experimental Liouvillian and its LEPs using both single- and two-qubit operations. This example underscores the efficacy of process tomography in tuning and observing LEPs even in the absence of HEPs.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] QUANTUM CHAOS, DEGENERACIES, AND EXCEPTIONAL POINTS
    HEISS, WD
    RADU, S
    PHYSICAL REVIEW E, 1995, 52 (05) : 4762 - 4767
  • [22] Exceptional points in open quantum systems
    Mueller, Markus
    Rotter, Ingrid
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
  • [23] Quantum interference and exceptional points in a nonreciprocal two-level system
    Dong, Jing
    Li, Xiao-Lin
    Dou, Fu-Quan
    Wang, Wen-Yuan
    PHYSICAL REVIEW A, 2023, 108 (06)
  • [24] Encircling of exceptional points with quantum light
    Zhong, Q.
    Khajavikhan, M.
    Ozdemir, S. K.
    El-Ganainy, R.
    Christodoulides, D. N.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [25] Robustness of exceptional-point-based sensors against parametric noise: The role of Hamiltonian and Liouvillian degeneracies
    Wiersig, Jan
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [26] Nontrivial Eigenvalues of the Liouvillian of an Open Quantum System
    Nakano, Ruri
    Hatano, Naomichi
    Petrosky, Tomio
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 1134 - 1142
  • [27] Characterization and Verification of Trotterized Digital Quantum Simulation Via Hamiltonian and Liouvillian Learning
    Pastori, Lorenzo
    Olsacher, Tobias
    Kokail, Christian
    Zoller, Peter
    PRX QUANTUM, 2022, 3 (03):
  • [28] Exceptional points of a Hamiltonian of von Neumann-Wigner type
    Fernandez-Garcia, N.
    Hernandez, E.
    Jauregui, A.
    Mondragon, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (17)
  • [29] Exceptional points of the eigenvalues of parameter-dependent Hamiltonian operators
    Amore, Paolo
    Fernandez, Francisco M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [30] EXCEPTIONAL POINTS OF A HAMILTONIAN AND PHASE-TRANSITIONS IN FINITE SYSTEMS
    HEISS, WD
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1988, 329 (02): : 133 - 138