Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing

被引:0
|
作者
Liang Huang
Xu Feng
Cheng Zhang
Liping Qian
Yuan Wu
机构
[1] CollegeofInformationEngineering,ZhejiangUniversityofTechnology
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing(MEC), which enables mobile terminals to offload computation tasks to servers located at the edge of the cellular networks, has been considered as an efficient approach to relieve the heavy computational burdens and realize an efficient computation offloading. Driven by the consequent requirement for proper resource allocations for computation offloading via MEC, in this paper, we propose a Deep-Q Network(DQN) based task offloading and resource allocation algorithm for the MEC. Specifically, we consider a MEC system in which every mobile terminal has multiple tasks offloaded to the edge server and design a joint task offloading decision and bandwidth allocation optimization to minimize the overall offloading cost in terms of energy cost, computation cost, and delay cost. Although the proposed optimization problem is a mixed integer nonlinear programming in nature, we exploit an emerging DQN technique to solve it. Extensive numerical results show that our proposed DQN-based approach can achieve the near-optimal performance.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [41] Federated Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Smart Cities in a Mobile Edge Network
    Chen, Xing
    Liu, Guizhong
    SENSORS, 2022, 22 (13)
  • [42] Deep Reinforcement Learning Based Offloading for Mobile Edge Computing with General Task Graph
    Yan, Jia
    Bi, Suzhi
    Huang, Liang
    Zhang, Ying-Jun Angela
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [43] Multi-user Edge-assisted Video Analytics Task Offloading Game based on Deep Reinforcement Learning
    Chen, Yu
    Zhang, Sheng
    Xiao, Mingjun
    Qian, Zhuzhong
    Wu, Jie
    Lu, Sanglu
    2020 IEEE 26TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2020, : 266 - 273
  • [44] Deep reinforcement learning-based computation offloading and resource allocation in security-aware mobile edge computing
    Ke, H. C.
    Wang, H.
    Zhao, H. W.
    Sun, W. J.
    WIRELESS NETWORKS, 2021, 27 (05) : 3357 - 3373
  • [45] Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing
    Yu, Zijia
    Xu, Xu
    Zhou, Wei
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [46] Deep reinforcement learning-based computation offloading and resource allocation in security-aware mobile edge computing
    H. C. Ke
    H. Wang
    H. W. Zhao
    W. J. Sun
    Wireless Networks, 2021, 27 : 3357 - 3373
  • [47] Deep Reinforcement Learning-Based Task Offloading and Load Balancing for Vehicular Edge Computing
    Wu, Zhoupeng
    Jia, Zongpu
    Pang, Xiaoyan
    Zhao, Shan
    ELECTRONICS, 2024, 13 (08)
  • [48] Federated Deep Reinforcement Learning-based task offloading system in edge computing environment
    Merakchi, Hiba
    Bagaa, Miloud
    Messaoud, Ahmed Ouameur
    Ksentini, Adlen
    Sehad, Abdenour
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5580 - 5586
  • [49] Joint Beamforming and Computation Offloading for Multi-user Mobile-Edge Computing
    Ding, Changfeng
    Wang, Jun-Bo
    Cheng, Ming
    Chang, Chuanwen
    Wang, Jin-Yuan
    Lin, Min
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [50] Deep reinforcement learning-based low-latency task offloading for mobile-edge computing networks
    Yang, Wentao
    Liu, Zhibin
    Liu, Xiaowu
    Ma, Yuefeng
    APPLIED SOFT COMPUTING, 2024, 166