Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing

被引:0
|
作者
Liang Huang
Xu Feng
Cheng Zhang
Liping Qian
Yuan Wu
机构
[1] CollegeofInformationEngineering,ZhejiangUniversityofTechnology
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing(MEC), which enables mobile terminals to offload computation tasks to servers located at the edge of the cellular networks, has been considered as an efficient approach to relieve the heavy computational burdens and realize an efficient computation offloading. Driven by the consequent requirement for proper resource allocations for computation offloading via MEC, in this paper, we propose a Deep-Q Network(DQN) based task offloading and resource allocation algorithm for the MEC. Specifically, we consider a MEC system in which every mobile terminal has multiple tasks offloaded to the edge server and design a joint task offloading decision and bandwidth allocation optimization to minimize the overall offloading cost in terms of energy cost, computation cost, and delay cost. Although the proposed optimization problem is a mixed integer nonlinear programming in nature, we exploit an emerging DQN technique to solve it. Extensive numerical results show that our proposed DQN-based approach can achieve the near-optimal performance.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [21] Multi-Agent Deep Reinforcement Learning-Based Partial Task Offloading and Resource Allocation in Edge Computing Environment
    Ke, Hongchang
    Wang, Hui
    Sun, Hongbin
    ELECTRONICS, 2022, 11 (15)
  • [22] Dynamic Multi-user Computation Offloading for Mobile Edge Computing using Game Theory and Deep Reinforcement Learning
    Teymoori, Peyvand
    Boukerche, Azzedine
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1930 - 1935
  • [23] Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Lu H.
    Gu C.
    Luo F.
    Ding W.
    Yang T.
    Zheng S.
    Gu, Chunhua (chgu@ecust.edu.cn), 1600, Science Press (57): : 1539 - 1554
  • [24] Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning
    Silva, Carlos
    Magaia, Naercio
    Grilo, Antonio
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 109 - 118
  • [25] Learning-Based Task Offloading for Mobile Edge Computing
    Garaali, Rim
    Chaieb, Cirine
    Ajib, Wessam
    Afif, Meriem
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1659 - 1664
  • [26] Deep Learning-based Task Offloading and Time Allocation for Edge Computing WBANs
    Zhang, Rongrong
    Li, Hui
    Qiao, Yingying
    Li, Mengyu
    Xia, Xu
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2206 - 2211
  • [27] Deep Reinforcement Learning-Based Offloading Decision Optimization in Mobile Edge Computing
    Zhang, Hao
    Wu, Wenjun
    Wang, Chaoyi
    Li, Meng
    Yang, Ruizhe
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [28] Context-Aware Multi-User Offloading in Mobile Edge Computing: a Federated Learning-Based Approach
    Shahidinejad, Ali
    Farahbakhsh, Fariba
    Ghobaei-Arani, Mostafa
    Malik, Mazhar Hussain
    Anwar, Toni
    JOURNAL OF GRID COMPUTING, 2021, 19 (02)
  • [29] Context-Aware Multi-User Offloading in Mobile Edge Computing: a Federated Learning-Based Approach
    Ali Shahidinejad
    Fariba Farahbakhsh
    Mostafa Ghobaei-Arani
    Mazhar Hussain Malik
    Toni Anwar
    Journal of Grid Computing, 2021, 19
  • [30] Joint computation offloading and task caching for multi-user and multi-task MEC systems: reinforcement learning-based algorithms
    Elgendy, Ibrahim A.
    Zhang, Wei-Zhe
    He, Hui
    Gupta, Brij B.
    Abd El-Latif, Ahmed A.
    WIRELESS NETWORKS, 2021, 27 (03) : 2023 - 2038