On monotone normality of function spaces

被引:0
|
作者
Yashchenko, I.V.
机构
关键词
Mathematical techniques - Set theory - Theorem proving;
D O I
暂无
中图分类号
O144 [集合论]; O157 [组合数学(组合学)];
学科分类号
070104 ;
摘要
For Tikhonov topological space X a theorem is proved on monotonic normality of an element of canonical base Cp(X). In accord with the theorem the following conditions are equivalent: (1)X is counting one, (2)Cp(X) has counting base, (3)CP(X) is a lace space, (4)Cp(x) is monotonically normal one.
引用
收藏
页码:95 / 96
相关论文
共 50 条
  • [21] Resolvability and monotone normality
    István Juhász
    Lajos Soukup
    Zoltán Szentmiklóssy
    Israel Journal of Mathematics, 2008, 166 : 1 - 16
  • [22] NORMALITY IN DENSE SUBSETS OF FUNCTION-SPACES
    BATUROV, DP
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1988, (04): : 63 - 65
  • [23] Directional monotone comparative statics in function spaces
    Uttiya Paul
    Tarun Sabarwal
    Economic Theory Bulletin, 2023, 11 : 153 - 169
  • [24] On monotone contraction mappings in modular function spaces
    Alfuraidan, Monther R.
    Bachar, Mostafa
    Khamsi, Mohamed A.
    FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [25] Directional monotone comparative statics in function spaces
    Paul, Uttiya
    Sabarwal, Tarun
    ECONOMIC THEORY BULLETIN, 2023, 11 (01) : 153 - 169
  • [26] On monotone contraction mappings in modular function spaces
    Monther R Alfuraidan
    Mostafa Bachar
    Mohamed A Khamsi
    Fixed Point Theory and Applications, 2015
  • [27] Monotone normality and neighborhood assignments
    Zhang, Hang
    Shi, Wei-Xue
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (03) : 603 - 607
  • [28] Dual properties and monotone normality
    Wei-Feng Xuan
    Yan-Kui Song
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [29] Zero dimensionality and monotone normality
    Rudin, ME
    TOPOLOGY AND ITS APPLICATIONS, 1998, 85 (1-3) : 319 - 333
  • [30] Strong monotone and nested normality
    Buck, RE
    Heath, RW
    Zenor, PL
    TOPOLOGY PROCEEDINGS, VOL 26, NO 1, 2001-2002, 2002, 26 (01): : 67 - 82