Dual properties and monotone normality

被引:0
|
作者
Wei-Feng Xuan
Yan-Kui Song
机构
[1] Nanjing Audit University,School of Statistics and Mathematics
[2] Nanjing Normal University,Institute of Mathematics, School of Mathematical Science
关键词
Monotone normality; dually separable; -weakly linearly Lindelöf; extent; symmetry ; -function; rank 2-diagonal; cardinal; 54D20; 54E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let P be a topological property. We say that a space X is dually P if for any neighbourhood assignment O={Ox:x∈X}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}=\{O_x: x\in X\}$$\end{document} of X, there is a subspace Y⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y \subset X$$\end{document} with P such that O(Y)=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(Y)=X$$\end{document}. In this paper, we make several observations on dually (c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {c}}$$\end{document}-)separable spaces. In particular, by using the idea of Buzyakova et al. (Comment Math Univ Carolin, 48(4): 689–697, 2007), we prove that every monotonically normal and ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document}-weakly linearly Lindelöf space of countable tightness is dually separable, and hence it is Lindelöf. We also prove that every dually separable and monolithic space has countable extent. Finally, we prove that every dually c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak c$$\end{document}-separable space with a rank 2-diagonal has cardinality not exceeding c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {c}}$$\end{document}.
引用
收藏
相关论文
共 50 条