ALGORITHM FOR THE CALCULATION OF A NILPOTENT INTERACTOR MATRIX FOR LINEAR MULTIVARIABLE SYSTEMS.

被引:0
|
作者
Rogozinski, Maciej W. [1 ]
Paplinski, Andrzej P. [1 ]
Gibbard, Michael J. [1 ]
机构
[1] Univ of Adelaide, Aust, Univ of Adelaide, Aust
关键词
Control systems; Discrete time - Control systems; Multivariable - MATHEMATICAL TECHNIQUES - Matrix Algebra;
D O I
10.1109/tac.1987.1104568
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new algorithm for the calculation of the delay structure for a linear multivariable system is presented. The algorithm evaluates a nilpotent interactor matrix from the matrix of coefficients of the numerator of a right matrix fraction description of the system. The resulting nilpotent interactor is a product of first degree, nilpotent polynomial matrices.
引用
收藏
页码:234 / 237
相关论文
共 50 条
  • [31] Synthesis of Nonlinear Multivariable Systems.
    Trefilov, V.F.
    Izvestiya Vysshikh Uchebnykh Zavedenii, Elektromekhanika, 1982, (07): : 816 - 821
  • [32] Multivariable MRAC for a Quadrotor UAV with a Non-Diagonal Interactor Matrix
    Sheng, Yu
    Tao, Gang
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 495 - 500
  • [33] Model reference adaptive control of non-linear multivariable systems using an interactor structure estimation
    Mutoh, Y
    ADAPTATION AND LEARNING IN CONTROL AND SIGNAL PROCESSING 2001, 2002, : 25 - 30
  • [34] MULTIVARIABLE SELF-TUNING CONTROL VIA THE RIGHT INTERACTOR MATRIX
    TSILIGIANNIS, CA
    SVORONOS, SA
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (10) : 987 - 989
  • [35] ALGORITHM FOR CALCULATION OF PROCESSES IN DISTRIBUTED-PARAMETER SYSTEMS.
    Kadymov, Ya.B.
    Mamedov, T.M.
    Aliev, N.Kh.
    Gabibullaev, S.B.
    Power engineering New York, 1983, 21 (05): : 67 - 74
  • [36] Linear Matrix Inequality Based Controller used in Multivariable Systems
    Nagarajapandian, M.
    Kanthalakshmi, S.
    Anitha, T.
    Devan, P. Arun Mozhi
    2019 17TH IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2019, : 134 - 139
  • [37] ALGORITHM FOR MINIMAL-REALIZATION OF LINEAR-MULTIVARIABLE SYSTEMS
    SEBAKHY, OA
    ELSINGABY, M
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1989, 20 (02) : 281 - 295
  • [38] EFFICIENT ALGORITHM FOR THE TRANSFORMATION OF LINEAR MULTIVARIABLE SYSTEMS TO CANONICAL.
    Hickin, J.
    Sinha, N.K.
    1600, (08):
  • [39] QUANTITATIVE MEASURES OF ROBUSTNESS FOR MULTIVARIABLE SYSTEMS.
    Patel, R.V.
    Toda, M.
    Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 1980, 2
  • [40] ASPECTS OF SYNTHESIS OF MULTIVARIABLE CONTROL SYSTEMS.
    Dotsenko, A.I.
    Engineering Cybernetics (English translation of Tekhnicheskaya Kibernetika), 1974, 12 (05): : 131 - 141