Length scale for bubble problem in Rayleigh-Taylor instability

被引:0
|
作者
University of Bayreuth, Institute for Theoretical Physics, Bayreuth D-95447, Germany [1 ]
机构
来源
Phys Fluids | / 4卷 / 940-942期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Bubble dynamics of Rayleigh-Taylor flow
    Ni, Weidan
    Zhang, Yousheng
    Zeng, Qinghong
    Tian, Baolin
    AIP ADVANCES, 2020, 10 (08)
  • [42] NUMERICAL STUDY OF THE RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1980, 255 (02): : 318 - 322
  • [43] Nonlinear saturation of the Rayleigh-Taylor instability
    Das, A
    Mahajan, S
    Kaw, P
    Sen, A
    Benkadda, S
    Verga, A
    PHYSICS OF PLASMAS, 1997, 4 (04) : 1018 - 1027
  • [44] Asymptotic behavior of the Rayleigh-Taylor instability
    Duchemin, L
    Josserand, C
    Clavin, P
    PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [45] NONLINEAR RAYLEIGH-TAYLOR INSTABILITY - COMMENT
    SHIVAMOGGI, BK
    ASTROPHYSICS AND SPACE SCIENCE, 1983, 97 (01) : 221 - 221
  • [46] GENERALIZED HYDROMAGNETIC RAYLEIGH-TAYLOR INSTABILITY
    GUPTA, JR
    KAUSHAL, MB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 134 (01) : 51 - 63
  • [47] THE RAYLEIGH-TAYLOR INSTABILITY IN DUSTY PLASMAS
    DANGELO, N
    PLANETARY AND SPACE SCIENCE, 1993, 41 (06) : 469 - 474
  • [49] Lagrangian formalism for the Rayleigh-Taylor instability
    Hazak, G
    PHYSICAL REVIEW LETTERS, 1996, 76 (22) : 4167 - 4170
  • [50] The Inhibition of the Rayleigh-Taylor Instability by Rotation
    Kyle A. Baldwin
    Matthew M. Scase
    Richard J. A. Hill
    Scientific Reports, 5