Length scale for bubble problem in Rayleigh-Taylor instability

被引:0
|
作者
University of Bayreuth, Institute for Theoretical Physics, Bayreuth D-95447, Germany [1 ]
机构
来源
Phys Fluids | / 4卷 / 940-942期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] An Experimental Study of The Rayleigh-Taylor Instability Critical Wave Length
    Kong Xujing Wang Youchun Zhang Shufei Xu Hongkun Institute of Engineering Thermophysics
    Journal of Thermal Science, 1992, (02) : 130 - 134
  • [32] MODEL OF RAYLEIGH-TAYLOR INSTABILITY
    AREF, H
    TRYGGVASON, G
    PHYSICAL REVIEW LETTERS, 1989, 62 (07) : 749 - 752
  • [33] On saturation of Rayleigh-Taylor instability
    Frenkel, AL
    Halpern, D
    IUTAM SYMPOSIUM ON NONLINEAR WAVES IN MULTI-PHASE FLOW, 2000, 57 : 69 - 79
  • [34] COMPRESSIBLE RAYLEIGH-TAYLOR INSTABILITY
    BAKER, L
    PHYSICS OF FLUIDS, 1983, 26 (04) : 950 - 952
  • [35] Rotating Rayleigh-Taylor instability
    Scase, M. M.
    Baldwin, K. A.
    Hill, R. J. A.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (02):
  • [36] MULTI-HARMONIC MODELS FOR BUBBLE EVOLUTION IN THE RAYLEIGH-TAYLOR INSTABILITY
    Choi, Sujin
    Sohn, Sung-Ik
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 663 - 673
  • [37] VORTEX-IN-CELL SIMULATION OF BUBBLE COMPETITION IN A RAYLEIGH-TAYLOR INSTABILITY
    ZUFIRIA, JA
    PHYSICS OF FLUIDS, 1988, 31 (11) : 3199 - 3212
  • [38] A NUMERICAL STUDY OF BUBBLE INTERACTIONS IN RAYLEIGH-TAYLOR INSTABILITY FOR COMPRESSIBLE FLUIDS
    GLIMM, J
    LI, XL
    MENIKOFF, R
    SHARP, DH
    ZHANG, Q
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (11): : 2046 - 2054
  • [39] Bubble merger and scaling law of the Rayleigh-Taylor instability with surface tension
    Sohn, Sung-Ik
    Baek, Seunghyeon
    PHYSICS LETTERS A, 2017, 381 (45) : 3812 - 3817
  • [40] The Rayleigh-Taylor instability for the Verigin problem with and without phase transition
    Pruess, Jan
    Simonett, Gieri
    Wilke, Mathias
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (03):