Some formulations coupling finite element and integral equation methods for Helmholtz equation and electromagnetism

被引:0
|
作者
De, La Bourdonnaye, A.
机构
来源
Numerische Mathematik | / 6985卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Dispersion measure for the finite element solution of the Helmholtz equation
    Deraemaeker, A
    Babuska, I
    Bouillard, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (01): : 103 - 108
  • [32] A mixed hybrid finite element method for the Helmholtz equation
    Hannukainen, A.
    Huber, M.
    Schoeberl, J.
    JOURNAL OF MODERN OPTICS, 2011, 58 (5-6) : 424 - 437
  • [33] A COMPARISON OF FINITE-ELEMENT AND INTEGRAL-EQUATION FORMULATIONS FOR THE CALCULATION OF ELECTROCARDIOGRAPHIC POTENTIALS
    PILKINGTON, TC
    MORROW, MN
    STANLEY, PC
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1985, 32 (02) : 166 - 173
  • [34] On Positivity Preservation in Some Finite Element Methods for the Heat Equation
    Thomee, V.
    NUMERICAL METHODS AND APPLICATIONS (NMA 2014), 2015, 8962 : 13 - 24
  • [35] On Preservation of Positivity in Some Finite Element Methods for the Heat Equation
    Chatzipantelidis, Panagiotis
    Horvath, Zoltan
    Thomee, Vidar
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2015, 15 (04) : 417 - 437
  • [36] Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation
    Erath, Christoph
    Mascotto, Lorenzo
    Melenk, Jens M.
    Perugia, Ilaria
    Rieder, Alexander
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [37] Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation
    Christoph Erath
    Lorenzo Mascotto
    Jens M. Melenk
    Ilaria Perugia
    Alexander Rieder
    Journal of Scientific Computing, 2022, 92
  • [38] ON THE NUMERICAL-SOLUTION OF HELMHOLTZ-EQUATION BY DIFFERENT FINITE-ELEMENT METHODS
    NEITTAANMAKI, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (05): : T364 - T366
  • [39] ON DIFFERENT FINITE-ELEMENT METHODS FOR APPROXIMATING THE GRADIENT OF THE SOLUTION TO THE HELMHOLTZ-EQUATION
    HASLINGER, J
    NEITTAANMAKI, P
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 42 (02) : 131 - 148
  • [40] FINITE-ELEMENT METHODS FOR THE HELMHOLTZ-EQUATION IN AN EXTERIOR DOMAIN - MODEL PROBLEMS
    HARARI, I
    HUGHES, TJR
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 87 (01) : 59 - 96