Finite element approximations of singular parabolic problems

被引:0
|
作者
Paolini, M. [1 ]
Sacchi, G. [1 ]
Verdi, C. [1 ]
机构
[1] CNR, Italy
关键词
D O I
暂无
中图分类号
学科分类号
摘要
50
引用
收藏
页码:1989 / 2007
相关论文
共 50 条
  • [21] Finite Element Approximations for Fractional Evolution Problems
    Gabriel Acosta
    Francisco M. Bersetche
    Juan Pablo Borthagaray
    Fractional Calculus and Applied Analysis, 2019, 22 : 767 - 794
  • [22] FINITE ELEMENT APPROXIMATIONS FOR FRACTIONAL EVOLUTION PROBLEMS
    Acosta, Gabriel
    Bersetche, Francisco M.
    Pablo Borthagaray, Juan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (03) : 767 - 794
  • [23] AN A POSTERIORI ERROR ANALYSIS OF MIXED FINITE ELEMENT GALERKIN APPROXIMATIONS TO SECOND ORDER LINEAR PARABOLIC PROBLEMS
    Memon, Sajid
    Nataraj, Neela
    Pani, Amiya Kumar
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1367 - 1393
  • [24] CONVERGENCE OF FINITE-ELEMENT APPROXIMATIONS TO STATE CONSTRAINED CONVEX PARABOLIC BOUNDARY CONTROL-PROBLEMS
    ALT, W
    MACKENROTH, U
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (04) : 718 - 736
  • [25] A posteriori L∞(L∞)-error estimates for finite-element approximations to parabolic optimal control problems
    Manohar, Ram
    Sinha, Rajen Kumar
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08):
  • [26] FINITE ELEMENT EXTERIOR CALCULUS FOR PARABOLIC PROBLEMS
    Arnold, Douglas N.
    Chen, Hongtao
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 17 - 34
  • [27] Subdomain-based error techniques for generalized finite element approximations of problems with singular stress fields
    Felício B. Barros
    Clovis S. de Barcellos
    C. Armando Duarte
    Diego A. F. Torres
    Computational Mechanics, 2013, 52 : 1395 - 1415
  • [28] Subdomain-based error techniques for generalized finite element approximations of problems with singular stress fields
    Barros, Felicio B.
    de Barcellos, Clovis S.
    Duarte, C. Armando
    Torres, Diego A. F.
    COMPUTATIONAL MECHANICS, 2013, 52 (06) : 1395 - 1415
  • [29] Fractal finite element method for singular problems
    Su, RKL
    Sun, HY
    Yong, Z
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 655 - 660
  • [30] Monotone convergence of finite element approximations of obstacle problems
    Zhang, Yongmin
    APPLIED MATHEMATICS LETTERS, 2007, 20 (04) : 445 - 449