FINITE ELEMENT APPROXIMATIONS FOR FRACTIONAL EVOLUTION PROBLEMS

被引:20
|
作者
Acosta, Gabriel [1 ,2 ]
Bersetche, Francisco M. [1 ,2 ]
Pablo Borthagaray, Juan [1 ,2 ]
机构
[1] Univ Buenos Aires, IMAS CONICET, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Dept Matemat, FCEyN, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
关键词
fractional Laplacian; Caputo derivative; evolution problems; DIFFUSION-WAVE EQUATIONS; DIFFERENCE APPROXIMATIONS; CONVOLUTION QUADRATURE; NUMERICAL-SOLUTION; SCALING LAWS; REGULARITY;
D O I
10.1515/fca-2019-0042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work introduces and analyzes a finite element scheme for evolution problems involving fractional-in-time and in-space differentiation operators up to order two. The left-sided fractional-order derivative in time we consider is employed to represent memory effects, while a nonlocal differentiation operator in space accounts for long-range dispersion processes. We discuss well-posedness and obtain regularity estimates for the evolution problems under consideration. The discrete scheme we develop is based on piecewise linear elements for the space variable and a convolution quadrature for the time component. We illustrate the method's performance with numerical experiments in one-and two-dimensional domains.
引用
收藏
页码:767 / 794
页数:28
相关论文
共 50 条