Simple passive scalar advection-diffusion model

被引:0
|
作者
Wunsch, Scott
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Lattice models of advection-diffusion
    Pierrehumbert, RT
    CHAOS, 2000, 10 (01) : 61 - 74
  • [32] Solutions of the advection-diffusion equation
    Tirabassi, T
    AIR POLLUTION V, 1997, : 197 - 206
  • [33] A 2-DIMENSIONAL ADVECTION-DIFFUSION OCEAN MODEL WITH ANISOTROPIC DIFFUSION
    LIN, CA
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1990, 54 (3-4): : 229 - 255
  • [34] CONCENTRATION IN AN ADVECTION-DIFFUSION MODEL WITH DIFFUSION COEFFICIENT DEPENDING ON THE PAST TRAJECTORY
    Burtea, Cosmin
    Meunier, Nicolas
    Mouhot, Clement
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (12) : 3649 - 3668
  • [35] Algorithm for Mesoscopic Advection-Diffusion
    Noel, Adam
    Makrakis, Dimitrios
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2018, 17 (04) : 543 - 554
  • [36] A simple but accurate explicit finite difference method for the advection-diffusion equation
    Sanjaya, Febi
    Mungkasi, Sudi
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE 2017, 2017, 909
  • [37] Passive scalar conditional statistics in a model of random advection
    Ching, ESC
    Tsang, YK
    PHYSICS OF FLUIDS, 1997, 9 (05) : 1353 - 1361
  • [38] Multiscale numerical methods for passive advection-diffusion in incompressible turbulent flow fields
    Lee, Yoonsang
    Engquist, Bjorn
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 317 : 33 - 46
  • [39] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [40] On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection-diffusion equations
    Simonis, Stephan
    Frank, Martin
    Krause, Mathias J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2175):