Multiscale numerical methods for passive advection-diffusion in incompressible turbulent flow fields

被引:6
|
作者
Lee, Yoonsang [1 ]
Engquist, Bjorn [2 ,3 ]
机构
[1] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Univ Texas Austin, ICES, Austin, TX 78712 USA
关键词
Multiscale methods; Seamless; Advection enhanced diffusion; MONTE-CARLO METHOD; MODELS;
D O I
10.1016/j.jcp.2016.04.046
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a seamless multiscale method which approximates the macroscopic behavior of the passive advection-diffusion equations with steady incompressible velocity fields with multi-spatial scales. The method uses decompositions of the velocity fields in the Fourier space, which are similar to the decomposition in large eddy simulations. It also uses a hierarchy of local domains with different resolutions as in multigrid methods. The effective diffusivity from finer scale is used for the next coarser level computation and this process is repeated up to the coarsest scale of interest. The grids are only in local domains whose sizes decrease depending on the resolution level so that the overall computational complexity increases linearly as the number of different resolution grids increases. The method captures interactions between finer and coarser scales but has to sacrifice some of interactions between different scales. The proposed method is numerically tested with 2D examples including a successful approximation to a continuous spectrum flow. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 50 条
  • [1] Analyses of numerical methods for the advection-diffusion problem
    Sangalli, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6A (02): : 319 - 321
  • [2] On stable and explicit numerical methods for the advection-diffusion equation
    Witek, Marcin L.
    Teixeira, Joao
    Flatau, Piotr J.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (03) : 561 - 570
  • [3] Numerical Inverse Laplace Transform Methods for Advection-Diffusion Problems
    Kamran, Farman Ali
    Shah, Farman Ali
    Aly, Wael Hosny Fouad
    Aksoy, Hasan M.
    Alotaibi, Fahad
    Mahariq, Ibrahim
    SYMMETRY-BASEL, 2022, 14 (12):
  • [4] Numerical efficiency of some exponential methods for an advection-diffusion equation
    Eduardo Macias-Diaz, Jorge
    Inan, Bilge
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (05) : 1005 - 1029
  • [5] Multiscale computation method for an advection-diffusion equation
    Su, Fang
    Xu, Zhan
    Cui, Jun-Zhi
    Du, Xin-Peng
    Jiang, Hao
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7369 - 7374
  • [6] Nonlinear Advection-Diffusion Models of Traffic Flow: a Numerical Study
    Matin, Hossein Nick Zinat
    Do, Dawson
    Delle Monache, Maria Laura
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2078 - 2083
  • [7] Numerical solution of an advection-diffusion equation
    Solución numérica de una ecuación del tipo advección-difusión
    1600, Centro de Informacion Tecnologica (25):
  • [8] Simple passive scalar advection-diffusion model
    Wunsch, Scott
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (5-A):
  • [9] Simple passive scalar advection-diffusion model
    Wunsch, S
    PHYSICAL REVIEW E, 1998, 58 (05): : 5757 - 5764
  • [10] Numerical Methods for a Class of Fractional Advection-Diffusion Models with Functional Delay
    Pimenov, Vladimir
    Hendy, Ahmed
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 533 - 541