The exponential map of GL(N)

被引:0
|
作者
Laufer, A.
机构
来源
| 1997年 / 30期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [11] THE EXPONENTIAL MAP IS NOT RECURRENT
    REES, M
    MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (04) : 593 - 598
  • [12] THE DERIVATIVE OF THE EXPONENTIAL MAP
    HERZ, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (03) : 909 - 911
  • [13] The ∗-Exponential as a Covering Map
    Altavilla, Amedeo
    Mongodi, Samuele
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024,
  • [14] (GL(n + 1, ℝ), GL(n, ℝ)) is a generalized Gelfand pair
    G. van Dijk
    Russian Journal of Mathematical Physics, 2008, 15 : 548 - 551
  • [15] DUALITY BETWEEN GL(n,R), GL(n,Qp), AND THE DEGENERATE AFFINE HECKE ALGEBRA FOR gl(n)
    Ciubotaru, Dan
    Trapa, Peter E.
    AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (01) : 141 - 170
  • [16] Derivatives for smooth representations of GL(n, R) and GL(n, C)
    Aizenbud, Avraham
    Gourevitch, Dmitry
    Sahi, Siddhartha
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 206 (01) : 1 - 38
  • [17] Semisimple restrictions from GL(n) to GL(n-1)
    Brundan, J
    Kleshchev, A
    Suprunenko, I
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 500 : 83 - 112
  • [18] Existence of Klyachko models for GL(n, R) and GL(n, C)
    Gourevitch, Dmitry
    Offen, Omer
    Sahi, Siddhartha
    Sayag, Eitan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (08) : 3585 - 3601
  • [19] The exponential map at a cuspidal singularity
    Grandjean, Vincent
    Grieser, Daniel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 736 : 33 - 67
  • [20] Invariant Subspaces and the Exponential Map
    A. Atzmon
    G. Godefroy
    N. J. Kalton
    Positivity, 2004, 8 : 101 - 107