Semisimple restrictions from GL(n) to GL(n-1)

被引:0
|
作者
Brundan, J [1 ]
Kleshchev, A
Suprunenko, I
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Byelarussian Acad Sci, Inst Math, Minsk 220072, BELARUS
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a criterion for the restriction of an irreducible rational GL(n)module to the naturally embedded subgroup GL (n - 1) to be semisimple, over an arbitrary algebraically closed field. In that case, we describe the composition factors of the restriction explicitly. As an application, we classify the completely splittable representations of general linear groups and give an exact character formula for these modules.
引用
收藏
页码:83 / 112
页数:30
相关论文
共 50 条
  • [1] Rankin-Selberg convolutions for GL(n)×GL(n) and GL(n)×GL(n-1) for principal series representations
    Jian-Shu Li
    Dongwen Liu
    Feng Su
    Binyong Sun
    Science China(Mathematics), 2023, 66 (10) : 2203 - 2218
  • [2] LIMITATION OF CHARACTERS OF GL(N,Q) ON GL(N-1,Q)
    THOMA, E
    MATHEMATISCHE ZEITSCHRIFT, 1971, 119 (04) : 321 - &
  • [3] A FOURIER SUMMATION FORMULA FOR THE SYMMETRICAL SPACE GL(N)/GL(N-1)
    FLICKER, YZ
    COMPOSITIO MATHEMATICA, 1993, 88 (01) : 39 - 117
  • [4] Gaiotto conjecture for Repq(GL(N-1|N))
    Braverman, Alexander
    Finkelberg, Michael
    Travkin, Roman
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (02) : 663 - 695
  • [5] Period relations for Rankin-Selberg convolutions for GL(n) X GL (n-1)
    Li, Jian-Shu
    Liu, Dongwen
    Sun, Binyong
    COMPOSITIO MATHEMATICA, 2024, 160 (08)
  • [6] On representations of GL(n) distinguished by GL(n-1) over a p-adic field
    Venketasubramanian, C. G.
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 194 (01) : 1 - 44
  • [7] Modular Representations of GL(n) Distinguished by GL(n-1) over a p-Adic Field
    Secherre, Vincent
    Venketasubramanian, Coolimuttam G.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (14) : 4435 - 4492
  • [8] Rankin-Selberg convolutions for GL(n)xGL(n) and GL(n)xGL(n-1) for principal series representations
    Li, Jian-Shu
    Liu, Dongwen
    Su, Feng
    Sun, Binyong
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (10) : 2203 - 2218
  • [9] SEMISIMPLE AND CUSPIDAL CHARACTERS OF GL(N)(O)
    HILL, G
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (01) : 7 - 25
  • [10] Rankin-Selberg convolutions for GL(n)×GL(n) and GL(n)×GL(n−1) for principal series representations
    Jian-Shu Li
    Dongwen Liu
    Feng Su
    Binyong Sun
    Science China Mathematics, 2023, 66 : 2203 - 2218