About the problem of the existence of fixed points of contraction maps on general menger spaces

被引:0
|
作者
Aire Force College of Engineering, Xi'an 710038, China [1 ]
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The problem of the existence of fixed points of contraction maps on general menger spaces is discussed in the paper and some good results are obtained.
引用
收藏
页码:32 / 36
相关论文
共 50 条
  • [31] EXISTENCE OF FIXED POINTS IN QUASI METRIC SPACES
    Chandok, Sumit
    Manro, Saurabh
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 266 - 275
  • [32] FIXED POINTS OF MULTIVALUED MAPS VIA (G,φ) - CONTRACTION
    Kamran, Tayyab
    Rakocevic, Vladimir
    Waheed, Mehwish
    Ali, Muhammad Usman
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (04): : 189 - 196
  • [33] Fixed points of multivalued maps via (G,φ)-contraction
    1600, Politechnica University of Bucharest (78):
  • [34] Common fixed points and compatible maps of type (P-1) and type (P-2) in Menger spaces
    Kutukcu, Servet
    Sharma, Sushil
    Yildiz, Cemil
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2008, 10 (03) : 391 - 402
  • [35] Existence of fixed points of set-valued maps on modular b-gauge spaces
    Ali, Muhammad Usman
    Dinu, Simona
    Petrescu, Lavinia
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (04): : 141 - 150
  • [36] Existence of common fixed points for linear combinations of contractive maps in enhanced probabilistic metric spaces
    Jafari, Shahnaz
    Shams, Maryam
    Ibeas, Asier
    De La Sen, Manuel
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (05): : 819 - 837
  • [37] EXISTENCE OF FIXED POINTS OF SET-VALUED MAPS ON MODULAR b-GAUGE SPACES
    Ali, Muhammad Usman
    Dinu, Simona
    Petrescu, Lavinia
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (04): : 141 - 150
  • [38] On the Existence and Uniqueness of Fixed Points of Fuzzy Cognitive Maps
    Harmati, Istvan A.
    Hatwagner, Miklos F.
    Koczy, Laszlo T.
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, IPMU 2018, PT I, 2018, 853 : 490 - 500
  • [39] Approximations to fixed points of contraction semigroups in Hilbert spaces
    Xu, HK
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1998, 19 (1-2) : 157 - 163
  • [40] Common fixed point theorems of compatible and weakly compatible maps in Menger spaces
    Fang, Jin-Xuan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1833 - 1843