EXISTENCE OF FIXED POINTS OF SET-VALUED MAPS ON MODULAR b-GAUGE SPACES

被引:0
|
作者
Ali, Muhammad Usman [1 ]
Dinu, Simona [2 ]
Petrescu, Lavinia [2 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[2] Univ Politehn Bucuresti, Dept Math & Informat, Bucharest 060042, Romania
关键词
Modular metric spaces; Modular b-metric spaces; Modular b-gauge spaces; Delta(b)-condition; Fatou property; METRIC SPACES; CONTRACTIONS; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall introduce the notion of modular b-gauge spaces with the help of pseudomodular b-metrics. We shall also prove some fixed point theorems for multivalued mappings on modular b-gauge spaces. Moreover, we shall construct an application of our result in nonlinear integral equations.
引用
收藏
页码:141 / 150
页数:10
相关论文
共 50 条
  • [1] Existence of fixed points of set-valued maps on modular b-gauge spaces
    Ali, Muhammad Usman
    Dinu, Simona
    Petrescu, Lavinia
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (04): : 141 - 150
  • [2] Fixed points of set-valued maps in locally complete spaces
    Bosch C.
    García C.L.
    Gilsdorf T.
    Gómez-Wulschner C.
    Vera R.
    [J]. Fixed Point Theory and Applications, 2017 (1)
  • [3] Generic Existence and Approximation of Fixed Points for Nonexpansive Set-valued Maps
    de Blasi, Francesco S.
    Myjak, Jozef
    Reich, Simeon
    Zaslavski, Alexander J.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2009, 17 (01) : 97 - 112
  • [4] Generic Existence and Approximation of Fixed Points for Nonexpansive Set-valued Maps
    Francesco S. de Blasi
    Józef Myjak
    Simeon Reich
    Alexander J. Zaslavski
    [J]. Set-Valued and Variational Analysis, 2009, 17 : 97 - 112
  • [5] Random fixed points of set-valued maps
    Shahzad, N
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (06) : 689 - 692
  • [6] Fixed Points of Eventually Δ-Restrictive and Δ(ε)-Restrictive Set-Valued Maps in Metric Spaces
    Debnath, Pradip
    de La Sen, Manuel
    [J]. SYMMETRY-BASEL, 2020, 12 (01):
  • [7] Porosity results on fixed points for nonexpansive set-valued maps in hyperbolic spaces
    Peng, Li-Hui
    Li, Chong
    Yao, Jen-Chih
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (02) : 989 - 1004
  • [8] Porosity and Fixed Points of Nonexpansive Set-Valued Maps
    Peng, Lihui
    Li, Chong
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (02) : 333 - 348
  • [9] FIXED-POINTS AND COINCIDENCES FOR SET-VALUED MAPS
    BENELMECHAIEKH, H
    DEGUIRE, P
    GRANAS, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (04): : 337 - 340
  • [10] Existence and Approximation of Fixed Points for Set-Valued Mappings
    Simeon Reich
    AlexanderJ Zaslavski
    [J]. Fixed Point Theory and Applications, 2010