Identification of parameter coupling in turbine design using neural networks

被引:0
|
作者
General Electric Corporate R&D, Cent, Schenectady, United States [1 ]
机构
来源
J Propul Power | / 3卷 / 503-508期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [11] GENERATIVE DESIGN OF A GAS TURBINE COMBUSTOR USING INVERTIBLE NEURAL NETWORKS
    Krueger, Patrick
    Gottschalk, Hanno
    Werdelmann, Bastian
    Krebs, Werner
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 3A, 2024,
  • [12] Parameter modelling of fleet gas turbine engines using gated recurrent neural networks
    Shuai, M.
    Yafeng, W.
    Hua, Z.
    Linfeng, G.
    13TH ASIA CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING, ACMAE 2022, 2023, 2472
  • [13] Trademark Design Code Identification Using Deep Neural Networks
    Showkatramani, Girish J.
    Khatri, Nidhi
    Landicho, Arlene
    Layog, Darwin
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 61 - 65
  • [14] The networks scale and coupling parameter in synchronization of neural networks with diluted synapses
    Li, Yan-Long
    Ma, Jun
    Chen, Yu-Hong
    Xu, Wen-Ke
    Wang, Ying-Hai
    CHAOS SOLITONS & FRACTALS, 2008, 36 (04) : 1062 - 1066
  • [15] Parameter Identification of Cutting Forces in Crankshaft Grinding Using Artificial Neural Networks
    Pavlenko, Ivan
    Saga, Milan
    Kuric, Ivan
    Kotliar, Alexey
    Basova, Yevheniia
    Trojanowska, Justyna
    Ivanov, Vitalii
    MATERIALS, 2020, 13 (23) : 1 - 12
  • [16] Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    Halil Karahan
    M. Tamer Ayvaz
    Hydrogeology Journal, 2008, 16 : 817 - 827
  • [17] Parameter Identification in Manufacturing Systems Using Physics-Informed Neural Networks
    Khalid, Md Meraj
    Schenkendorf, Rene
    ADVANCES IN ARTIFICIAL INTELLIGENCE IN MANUFACTURING, ESAIM 2023, 2024, : 51 - 60
  • [18] Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    Karahan, Halil
    Ayvaz, M. Tamer
    HYDROGEOLOGY JOURNAL, 2008, 16 (05) : 817 - 827
  • [19] Terrain parameter identification for wheeled mobile robots using deep neural networks
    Bayat, Amir
    Azimi, Ali
    Taghvaeipour, Afshin
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2024,
  • [20] Distributed parameter system identification using finite element differential neural networks
    Aguilar-Leal, O.
    Fuentes-Aguilar, R. Q.
    Chairez, I.
    Garcia-Gonzalez, A.
    Huegel, J. C.
    APPLIED SOFT COMPUTING, 2016, 43 : 633 - 642