Symmetrical properties and bifurcations of the periodic solutions for a hybridly coupled oscillator

被引:0
|
作者
Univ of Tokushima, Tokushima-shi, Japan [1 ]
机构
来源
关键词
Bifurcation (mathematics) - Mathematical models;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the bifurcations of the periodic solutions induced by the symmetrical properties of a system of hybridly coupled oscillators of the Rayleigh type. By analog with the results concerning with the equilibria, we classify the periodic solutions according to their spatial and temporal symmetries. We discuss the possible bifurcations of each type of periodic solution. Finally we analyze the phase portraits of the system when the parameters vary.
引用
收藏
相关论文
共 50 条
  • [31] Periodic Solutions and Stability Analysis for Two-Coupled-Oscillator Structure in Optics of Chiral Molecules
    Li, Jing
    Chen, Yuying
    Zhu, Shaotao
    MATHEMATICS, 2022, 10 (11)
  • [32] DECAY PROPERTIES OF PERIODIC, RADIALLY SYMMETRICAL SOLUTIONS OF SINE-GORDON-TYPE EQUATIONS
    SCARPELLINI, B
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (05) : 359 - 378
  • [33] PERIODIC SOLUTIONS AND BIFURCATIONS OF FIRST-ORDER PERIODIC IMPULSIVE DIFFERENTIAL EQUATIONS
    Hu, Zhaoping
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (08): : 2515 - 2530
  • [34] Bifurcations of backbone curves for systems of coupled nonlinear two mass oscillator
    Cammarano, A.
    Hill, T. L.
    Neild, S. A.
    Wagg, D. J.
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 311 - 320
  • [35] Bifurcations of backbone curves for systems of coupled nonlinear two mass oscillator
    A. Cammarano
    T. L. Hill
    S. A. Neild
    D. J. Wagg
    Nonlinear Dynamics, 2014, 77 : 311 - 320
  • [36] Periodic and Quasiperiodic Solutions of a Forced Discontinuous Oscillator
    Li, Denghui
    Zhang, Xiaoming
    Zhou, Biliu
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (SUPPL 1)
  • [37] Resonant periodic solutions in regularized impact oscillator
    Makarenkov, Oleg
    Verhulst, Ferdinand
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (02)
  • [38] Stability of odd periodic solutions in a resonant oscillator
    Daniel Núñez
    Andrés Rivera
    Gian Rossodivita
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 443 - 455
  • [39] Stability of odd periodic solutions in a resonant oscillator
    Nunez, Daniel
    Rivera, Andres
    Rossodivita, Gian
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 443 - 455
  • [40] Analysis of the periodic solutions of a smooth and discontinuous oscillator
    Zhi-Xin Li
    Qing-Jie Cao
    Marian Wiercigroch
    Alain Léger
    Acta Mechanica Sinica, 2013, 29 : 575 - 582