Periodic and Quasiperiodic Solutions of a Forced Discontinuous Oscillator

被引:0
|
作者
Li, Denghui [1 ,3 ]
Zhang, Xiaoming [2 ]
Zhou, Biliu [1 ]
机构
[1] Changshu Inst Technol, Sch Math & Stat, Changshu 215500, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing 210016, Jiangsu, Peoples R China
[3] Hexi Univ, Sch Math, Zhangye 734000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Discontinuous oscillator; Twist map; Generating function; Aubry-Mather set; TWIST MAPPINGS; MOTIONS;
D O I
10.1007/s12346-024-01094-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a forced oscillator with a discontinuous restoring force. By the Aubry-Mather theory we prove that there exist infinitely many periodic and quasiperiodic solutions. The proof relies on analysing the generating function of the system. The approach is applicable to studying the dynamics of more general forced nonsmooth oscillators of Hamiltonian type.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On the boundedness of solutions of a forced discontinuous oscillator
    M-Seara, Tere
    Silva, Luan V. M. F.
    Villanueva, Jordi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 412 : 529 - 567
  • [2] Analysis of the periodic solutions of a smooth and discontinuous oscillator
    Li, Zhi-Xin
    Cao, Qing-Jie
    Wiercigroch, Marian
    Leger, Alain
    ACTA MECHANICA SINICA, 2013, 29 (04) : 575 - 582
  • [3] Analysis of the periodic solutions of a smooth and discontinuous oscillator
    Zhi-Xin Li
    Qing-Jie Cao
    Marian Wiercigroch
    Alain Léger
    Acta Mechanica Sinica, 2013, 29 : 575 - 582
  • [4] Analysis of the periodic solutions of a smooth and discontinuous oscillator
    Zhi-Xin Li
    Qing-Jie Cao
    Marian Wiercigroch
    Alain Léger
    Acta Mechanica Sinica, 2013, (04) : 575 - 582
  • [5] An antimaximum principle for periodic solutions of a forced oscillator
    Albouy, Alain
    Urena, Antonio J.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (09)
  • [6] Quasi-periodic solutions of a forced asymmetric oscillator at resonance
    Capietto, A
    Liu, B
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (01) : 105 - 117
  • [7] FORCED PERIODIC MOTIONS OF A QUASIPERIODIC SYSTEM WITH A LAG
    AKULENKO, LD
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1984, 48 (04): : 459 - 465
  • [8] BIFURCATIONS OF THE QUASI-PERIODIC SOLUTIONS OF A COUPLED FORCED VANDERPOL OSCILLATOR
    PAPY, O
    KAWAKAMI, H
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1994, E77A (11) : 1788 - 1793
  • [9] Forced systems with almost periodic and quasiperiodic forcing term
    Carminati, C
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (06) : 727 - 739
  • [10] Quasiperiodic Solutions of Completely Resonant Wave Equations with Quasiperiodic Forced Terms
    Gao, Yixian
    Zhang, Weipeng
    Chang, Jing
    ABSTRACT AND APPLIED ANALYSIS, 2014,