Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition

被引:0
|
作者
机构
[1] Choi, B.J.
[2] Jeong, D.S.
[3] Kim, S.K.
[4] 1,Rohde, C.
[5] Choi, S.
[6] Oh, J.H.
[7] Kim, H.J.
[8] Hwang, C.S.
[9] Szot, K.
[10] Waser, R.
[11] 2,Reichenberg, B.
[12] Tiedke, S.
来源
Choi, B.J. | 1600年 / American Institute of Physics Inc.卷 / 98期
关键词
The work was supported by the National Program for 0.1 Terabit NVM Devices and by the National Research Laboratories program of the Korean Ministry of Science and Technology. The collaboration between Seoul National University and Juelich groups was supported by the Alexander von Humboldt foundation. Two of the authors (C.S.H. and R.W.) acknowledge that. FIG. 1. (a) Typical current density vs voltage ( J - V ) curve of a 57-nm-thick TiO 2 film with Pt electrodes. (b) J - V curve under positive and negative biases. FIG. 2. J - V curves of a 57-nm-thick film plotted in logarithmic scale. FIG. 3. Variation of the J - V curve of the high-resistance state with the measurement temperature in the voltage region with linear conduction. FIG. 4. J - V curves of samples in the low-resistance state at measurement temperatures of (a) 50; (b); 70; and (c) 110 °C. FIG. 5. Retention behavior of samples in the low- and high-resistance states; respectively. The resistance of both states increases with time even at room temperature. FIG. 6. Variation in the resistance of the (a) low- and (b) high-resistance states as a function of the TiO 2 film thickness measured at 0.5 V. FIG. 7. Conductivity mapping results of the (a) low- and (b) high-resistance state TiO 2 films; using HVAFM. The bright spots represent the conducting spots. FIG. 8. Distribution of the number of conducting spots as a function of the current at each spot for the (a) low- and (b) high-resistance states measured by HVAFM. The inset figures show the rectified distributions after subtracting the most probable current. FIG. 9. I - V curve in logarithmic scale of a typical nonconducting; a conducting spot of the low-resistance state; and a conducting spot of the high-resistance state. FIG. 10. Schematic of the multiple effect for the (a) 1ow-resistive state and (b) high-resistive state. (c) shows a schematic of the convolution effect for the high-resistance state considering the larger tip-surface interaction area in the case of APAFM. FIG. 11. Distribution of the number of conducting spots as a function of the current at each spot for the (a) low- and (b) high-resistance states measured by APAFM. The inset figures show the rectified distributions afer subtracting the most probable current;
D O I
暂无
中图分类号
学科分类号
摘要
20
引用
收藏
相关论文
共 50 条
  • [31] Resistive switching characteristics of HfO2 grown by atomic layer deposition
    Kim, Kyong-Rae
    Park, In-Sung
    Hong, Jin Pyo
    Lee, Sang Seol
    Choi, Bang Lim
    Ahn, Jinho
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 49 : S548 - S551
  • [32] Change of resistive-switching in TiO2 films with additional HfO2 thin layer
    Doosung Lee
    Yonghun Sung
    Hyunchul Sohn
    Dae-Hong Ko
    Mann-Ho Cho
    [J]. Journal of the Korean Physical Society, 2012, 60 : 1313 - 1316
  • [33] Change of Resistive-switching in TiO2 Films with Additional HfO2 Thin Layer
    Lee, Doosung
    Sung, Yonghun
    Sohn, Hyunchul
    Ko, Dae-Hong
    Cho, Mann-Ho
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 60 (09) : L1313 - L1316
  • [34] Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films
    Kim, Kyung Min
    Choi, Byung Joon
    Shin, Yong Cheol
    Choi, Seol
    Hwang, Cheol Seong
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (01)
  • [35] Enhanced photocatalytic performance in atomic layer deposition grown TiO2 thin films via hydrogen plasma treatment
    Sasinska, Alexander
    Singh, Trilok
    Wang, Shuangzhou
    Mathur, Sanjay
    Kraehnert, Ralph
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2015, 33 (01):
  • [36] Optical, Electrical, and Crystal Properties of TiO2 Thin Films Grown by Atomic Layer Deposition on Silicon and Glass Substrates
    I. Kupa
    Y. Unal
    S. S. Cetin
    L. Durna
    K. Topalli
    A. K. Okyay
    H. Ates
    [J]. Journal of Electronic Materials, 2018, 47 : 4502 - 4507
  • [37] Spectroscopic ellipsometry characterization of amorphous and crystalline TiO2 thin films grown by atomic layer deposition at different temperatures
    Saha, D.
    Ajimsha, R. S.
    Rajiv, K.
    Mukherjee, C.
    Gupta, M.
    Misra, P.
    Kukreja, L. M.
    [J]. APPLIED SURFACE SCIENCE, 2014, 315 : 116 - 123
  • [38] Nanocavity-Mediated Purcell Enhancement of Er in TiO2 Thin Films Grown via Atomic Layer Deposition
    Ji, Cheng
    Solomon, Michael T.
    Grant, Gregory D.
    Tanaka, Koichi
    Hua, Muchuan
    Wen, Jianguo
    Seth, Sagar Kumar
    Horn, Connor P.
    Masiulionis, Ignas
    Singh, Manish Kumar
    Sullivan, Sean E.
    Heremans, F. Joseph
    Awschalom, David D.
    Guha, Supratik
    Dibos, Alan M.
    [J]. ACS NANO, 2024, 18 (14) : 9929 - 9941
  • [39] Optical, Electrical, and Crystal Properties of TiO2 Thin Films Grown by Atomic Layer Deposition on Silicon and Glass Substrates
    Kupa, I.
    Unal, Y.
    Cetin, S. S.
    Durna, L.
    Topalli, K.
    Okyay, A. K.
    Ates, H.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (08) : 4502 - 4507
  • [40] Structural and optical investigation of brookite TiO2 thin films grown by atomic layer deposition on Si (111) substrates
    Qaid, Saif M. H.
    Hussain, Mukhtar
    Hezam, Mahmoud
    Khan, M. A. Majeed
    Albrithen, Hamad
    Ghaithan, Hamid M.
    Aldwayyan, Abdullah S.
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2019, 225 : 55 - 59