Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition

被引:0
|
作者
机构
[1] Choi, B.J.
[2] Jeong, D.S.
[3] Kim, S.K.
[4] 1,Rohde, C.
[5] Choi, S.
[6] Oh, J.H.
[7] Kim, H.J.
[8] Hwang, C.S.
[9] Szot, K.
[10] Waser, R.
[11] 2,Reichenberg, B.
[12] Tiedke, S.
来源
Choi, B.J. | 1600年 / American Institute of Physics Inc.卷 / 98期
关键词
The work was supported by the National Program for 0.1 Terabit NVM Devices and by the National Research Laboratories program of the Korean Ministry of Science and Technology. The collaboration between Seoul National University and Juelich groups was supported by the Alexander von Humboldt foundation. Two of the authors (C.S.H. and R.W.) acknowledge that. FIG. 1. (a) Typical current density vs voltage ( J - V ) curve of a 57-nm-thick TiO 2 film with Pt electrodes. (b) J - V curve under positive and negative biases. FIG. 2. J - V curves of a 57-nm-thick film plotted in logarithmic scale. FIG. 3. Variation of the J - V curve of the high-resistance state with the measurement temperature in the voltage region with linear conduction. FIG. 4. J - V curves of samples in the low-resistance state at measurement temperatures of (a) 50; (b); 70; and (c) 110 °C. FIG. 5. Retention behavior of samples in the low- and high-resistance states; respectively. The resistance of both states increases with time even at room temperature. FIG. 6. Variation in the resistance of the (a) low- and (b) high-resistance states as a function of the TiO 2 film thickness measured at 0.5 V. FIG. 7. Conductivity mapping results of the (a) low- and (b) high-resistance state TiO 2 films; using HVAFM. The bright spots represent the conducting spots. FIG. 8. Distribution of the number of conducting spots as a function of the current at each spot for the (a) low- and (b) high-resistance states measured by HVAFM. The inset figures show the rectified distributions after subtracting the most probable current. FIG. 9. I - V curve in logarithmic scale of a typical nonconducting; a conducting spot of the low-resistance state; and a conducting spot of the high-resistance state. FIG. 10. Schematic of the multiple effect for the (a) 1ow-resistive state and (b) high-resistive state. (c) shows a schematic of the convolution effect for the high-resistance state considering the larger tip-surface interaction area in the case of APAFM. FIG. 11. Distribution of the number of conducting spots as a function of the current at each spot for the (a) low- and (b) high-resistance states measured by APAFM. The inset figures show the rectified distributions afer subtracting the most probable current;
D O I
暂无
中图分类号
学科分类号
摘要
20
引用
收藏
相关论文
共 50 条
  • [1] Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition -: art. no. 033715
    Choi, BJ
    Jeong, DS
    Kim, SK
    Rohde, C
    Choi, S
    Oh, JH
    Kim, HJ
    Hwang, CS
    Szot, K
    Waser, R
    Reichenberg, B
    Tiedke, S
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 98 (03)
  • [2] Resistive memory switching in ultrathin TiO2 films grown by atomic layer deposition
    Sahu, V. K.
    Misra, P.
    Ajimsha, R. S.
    Das, A. K.
    Joshi, M. P.
    Kukreja, L. M.
    [J]. DAE SOLID STATE PHYSICS SYMPOSIUM 2015, 2016, 1731
  • [3] Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films
    Kim, Kyung Min
    Choi, Byung Joon
    Hwang, Cheol Seong
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (24)
  • [4] High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer deposition
    Kim, SK
    Kim, WD
    Kim, KM
    Hwang, CS
    Jeong, J
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (18) : 4112 - 4114
  • [5] Studies on transient characteristics of unipolar resistive switching processes in TiO2 thin film grown by atomic layer deposition
    Sahu, Vikas Kumar
    Das, Amit K.
    Ajimsha, R. S.
    Misra, P.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (21)
  • [6] MORPHOLOGY AND STRUCTURE OF TIO2 THIN-FILMS GROWN BY ATOMIC LAYER DEPOSITION
    AARIK, J
    AIDLA, A
    UUSTARE, T
    SAMMELSELG, V
    [J]. JOURNAL OF CRYSTAL GROWTH, 1995, 148 (03) : 268 - 275
  • [7] Spectroscopic study of nanocrystalline TiO2 thin films grown by atomic layer deposition
    Suisalu, A
    Aarik, J
    Mändar, H
    Sildos, I
    [J]. THIN SOLID FILMS, 1998, 336 (1-2) : 295 - 298
  • [8] Refractive index gradients in TiO2 thin films grown by atomic layer deposition
    Kasikov, A
    Aarik, J
    Mändar, H
    Moppel, M
    Pärs, M
    Uustare, T
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (01) : 54 - 60
  • [9] Spectroscopic study of nanocrystalline TiO2 thin films grown by atomic layer deposition
    Suisalu, A
    Aarik, J
    Mändar, H
    Sildos, I
    [J]. THIN FILMS EPITAXIAL GROWTH AND NANOSTRUCTURES, 1999, 79 : 295 - 298
  • [10] Quantum size effects in TiO2 thin films grown by atomic layer deposition
    Tallarida, Massimo
    Das, Chittaranjan
    Schmeisser, Dieter
    [J]. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2014, 5 : 77 - 82