Studies of the atmospheric boundary layer over Moscow by remote sensing and direct methods

被引:0
|
作者
Lokoshchenko, M.A. [1 ]
Isaev, A.A. [1 ]
Kallistratova, M.A. [1 ]
Pekur, M.S. [1 ]
机构
[1] Moskovskij Gosudarstvennyj Univ im., M.V. Lomonosova, Moscow, Russia
来源
关键词
Atmospheric structure - Boundary layers - Climatology - Measurement errors - Monitoring - Radio - Remote sensing - Temperature distribution - Temperature measurement - Velocity - Wind;
D O I
暂无
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Analyzed are the main results of a complex experiment performed in Moscow and the Moscow Region in summer of 1991. Simultaneous observations of the structure of the atmospheric boundary layer (mostly thermal) by direct methods, radiosounding, and acoustic remote sensing confirmed a number of regularities well-known in climatology, such as the consecutive reversal of temperature stratification in the diurnal cycle, the cross-over effect in the surface inversion structure over cities, the conversion height existing in vertical wind speed profiles, etc. A preliminary estimate of the spatial inhomogeneity of the temperature lapse rate in the lower atmospheric layer is obtained. The reliability is confirmed of the determination of temperature stratification from acoustic echosonde measurements. Errors are found in measurements by the Ostankino tower sensors (probably due to the effect of the TV tower).
引用
收藏
页码:20 / 34
相关论文
共 50 条
  • [31] Laser remote sensing of the planetary boundary layer
    Bösenberg, J
    Linné, H
    METEOROLOGISCHE ZEITSCHRIFT, 2002, 11 (04) : 233 - 240
  • [32] REMOTE SENSING OF STABLE BOUNDARY LAYER OF ATMOSPHERE
    Banakh, V. A.
    Smalikho, I. N.
    Fafits, A., V
    29TH INTERNATIONAL LASER RADAR CONFERENCE (ILRC 29), 2020, 237
  • [33] Two linearization methods for atmospheric remote sensing
    Doicu, A.
    Trautmann, T.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (08): : 477 - 490
  • [34] Iterative regularization methods for atmospheric remote sensing
    Doicu, A
    Schreier, F
    Hess, M
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2004, 83 (01): : 47 - 61
  • [35] Remote sensing of the thermodynamic state of the atmospheric boundary layer by ground-based microwave radiometry
    Güldner, J
    Spänkuch, D
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2001, 18 (06) : 925 - 933
  • [36] Boundary Layer via Multifractal Mass Conductivity through Remote Sensing Data in Atmospheric Dynamics
    Nica, Dragos-Constantin
    Cazacu, Marius-Mihai
    Constantin, Daniel-Eduard
    Nedeff, Valentin
    Nedeff, Florin
    Vasincu, Decebal
    Rosu, Iulian-Alin
    Agop, Maricel
    FRACTAL AND FRACTIONAL, 2022, 6 (05)
  • [38] On contents of trace gases in the atmospheric surface layer over Moscow
    N. F. Elansky
    M. A. Lokoshchenko
    A. V. Trifanova
    I. B. Belikov
    A. I. Skorokhod
    Izvestiya, Atmospheric and Oceanic Physics, 2015, 51 : 30 - 41
  • [39] On contents of trace gases in the atmospheric surface layer over Moscow
    Elansky, N. F.
    Lokoshchenko, M. A.
    Trifanova, A. V.
    Belikov, I. B.
    Skorokhod, A. I.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2015, 51 (01) : 30 - 41
  • [40] The atmospheric boundary layer over Baltic Sea
    Brümmer, B
    Kirchgassner, A
    Müller, G
    BOUNDARY-LAYER METEOROLOGY, 2005, 117 (01) : 91 - 109