Boundary Layer via Multifractal Mass Conductivity through Remote Sensing Data in Atmospheric Dynamics

被引:2
|
作者
Nica, Dragos-Constantin [1 ]
Cazacu, Marius-Mihai [2 ]
Constantin, Daniel-Eduard [3 ]
Nedeff, Valentin [4 ]
Nedeff, Florin [5 ]
Vasincu, Decebal [6 ]
Rosu, Iulian-Alin [2 ,7 ]
Agop, Maricel [2 ,8 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Geog & Geol, Dept Geog, Iasi 700505, Romania
[2] Gheorghe Asachi Tech Univ Iasi, Dept Phys, Iasi 700050, Romania
[3] Dunarea de Jos Univ Galati, Fac Sci & Environm, Galati 800008, Romania
[4] Vasile Alecsandri Univ Bacau, Fac Engn, Dept Ind Syst Engn & Management, Bacau 600115, Romania
[5] Vasile Alecsandri Univ Bacau, Fac Engn, Dept Environm Engn & Mech Engn, Bacau 600115, Romania
[6] Grigore T Popa Univ Med & Pharm, Fac Dent Med, Dept Biophys, Iasi 700115, Romania
[7] Alexandru Ioan Cuza Univ, Fac Phys, Iasi 700506, Romania
[8] Romanian Scientists Acad, Bucharest 010071, Romania
基金
芬兰科学院;
关键词
atmosphere; multifractal; conductivity; ceilometer;
D O I
10.3390/fractalfract6050250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, multifractal theories of motion based on scale relativity theory are considered in the description of atmospheric dynamics. It is shown that these theories have the potential to highlight nondimensional mass conduction laws that describe the propagation of atmospheric entities. Then, using special operational procedures and harmonic mappings, these equations can be rewritten and simplified for their plotting and analysis to be performed. The inhomogeneity of these conduction phenomena is analyzed, and it is found that it can fluctuate and increase at certain fractal dimensions, leading to the conclusion that certain atmospheric structures and phenomena of either atmospheric transmission or stability can be explained by atmospheric fractal dimension inversions. Finally, this hypothesis is verified using ceilometer data throughout the atmospheric profiles.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Multifractality via Stochasticity in Atmospheric Dynamics Description Validated through Remote Sensing Data
    Nica, Dragos-Constantin
    Voiculescu, Mirela
    Constantin, Daniel-Eduard
    Girtu, Manuela
    Topliceanu, Liliana
    Vasincu, Decebal
    Rosu, Iulian-Alin
    Agop, Maricel
    MATHEMATICS, 2022, 10 (06)
  • [2] REMOTE AND DIRECT SENSING OF ATMOSPHERIC BOUNDARY-LAYER
    RICHTER, JH
    NOONKEST.VR
    JENSEN, DR
    KONRAD, TG
    ARNOLD, A
    ROWLAND, JR
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1974, 55 (04): : 271 - 271
  • [3] Multispectral remote sensing of the coastal atmospheric boundary layer
    Wash, CH
    Davidson, KL
    Jordan, MS
    EIGHTH CONFERENCE ON SATELLITE METEOROLOGY AND OCEANOGRAPHY, 1996, : 450 - 454
  • [4] Remote sensing of the dynamic stability of the atmospheric boundary layer
    J. R. Taylor
    D. J. Low
    G. J. Woods
    Meteorology and Atmospheric Physics, 2004, 85 : 101 - 113
  • [5] Remote sensing of the dynamic stability of the atmospheric boundary layer
    Taylor, JR
    Low, DJ
    Woods, GJ
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2004, 85 (1-3) : 101 - 113
  • [6] Integrated monitoring of the atmospheric boundary layer dynamics by remote sensing methods in June 2015 in Tomsk
    Kokhanenko, Grigorii P.
    Balin, Yurii S.
    Nasonov, Sergei V.
    Penner, Ioganes E.
    Samoilova, Svetlana V.
    Smalikho, Igor N.
    Falits, Andrei V.
    Rasskazchikova, Tatyana M.
    Gladkikh, Vladimir A.
    Odintsov, Sergei L.
    Kamardin, Andrei P.
    Antokhin, Pavel N.
    Arshinov, Mikhail Yu.
    22ND INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2016, 10035
  • [7] Remote Sensing and Structure Analysis for Turbulence and Fog in Atmospheric Boundary Layer
    Wei, Ming
    Du, Kun
    Xu, Shu
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 1: ADVANCES ON SPACE WEATHER, METEOROLOGY AND APPLIED PHYSICS, 2010, : 93 - 96
  • [8] Remote Sensing and Sounding of the Atmospheric Boundary Layer PREFACE TO THE TOPICAL ISSUE
    Sorbjan, Zbigniew
    Stacewicz, Tadeusz
    ACTA GEOPHYSICA, 2012, 60 (05) : 1259 - 1260
  • [9] Some results of turbulence structure in the atmospheric boundary layer by remote sensing
    Weng, NQ
    Xiao, LM
    Wang, YJ
    Gong, ZB
    ATMOSPHERIC RADIATION MEASUREMENTS AND APPLICATIONS IN CLIMATE, 2002, 4815 : 139 - 142
  • [10] Internal gravity-shear waves in the atmospheric boundary layer from acoustic remote sensing data
    Lyulyukin, V. S.
    Kallistratova, M. A.
    Kouznetsov, R. D.
    Kuznetsov, D. D.
    Chunchuzov, I. P.
    Chirokova, G. Yu.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2015, 51 (02) : 193 - 202