Boundary Layer via Multifractal Mass Conductivity through Remote Sensing Data in Atmospheric Dynamics

被引:2
|
作者
Nica, Dragos-Constantin [1 ]
Cazacu, Marius-Mihai [2 ]
Constantin, Daniel-Eduard [3 ]
Nedeff, Valentin [4 ]
Nedeff, Florin [5 ]
Vasincu, Decebal [6 ]
Rosu, Iulian-Alin [2 ,7 ]
Agop, Maricel [2 ,8 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Geog & Geol, Dept Geog, Iasi 700505, Romania
[2] Gheorghe Asachi Tech Univ Iasi, Dept Phys, Iasi 700050, Romania
[3] Dunarea de Jos Univ Galati, Fac Sci & Environm, Galati 800008, Romania
[4] Vasile Alecsandri Univ Bacau, Fac Engn, Dept Ind Syst Engn & Management, Bacau 600115, Romania
[5] Vasile Alecsandri Univ Bacau, Fac Engn, Dept Environm Engn & Mech Engn, Bacau 600115, Romania
[6] Grigore T Popa Univ Med & Pharm, Fac Dent Med, Dept Biophys, Iasi 700115, Romania
[7] Alexandru Ioan Cuza Univ, Fac Phys, Iasi 700506, Romania
[8] Romanian Scientists Acad, Bucharest 010071, Romania
基金
芬兰科学院;
关键词
atmosphere; multifractal; conductivity; ceilometer;
D O I
10.3390/fractalfract6050250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, multifractal theories of motion based on scale relativity theory are considered in the description of atmospheric dynamics. It is shown that these theories have the potential to highlight nondimensional mass conduction laws that describe the propagation of atmospheric entities. Then, using special operational procedures and harmonic mappings, these equations can be rewritten and simplified for their plotting and analysis to be performed. The inhomogeneity of these conduction phenomena is analyzed, and it is found that it can fluctuate and increase at certain fractal dimensions, leading to the conclusion that certain atmospheric structures and phenomena of either atmospheric transmission or stability can be explained by atmospheric fractal dimension inversions. Finally, this hypothesis is verified using ceilometer data throughout the atmospheric profiles.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Vertical distribution of aerosol mass concentration in the atmospheric boundary layer above the Atlantic Ocean from lidar sensing data
    Shamanaev, V. S.
    Kokhanenko, G. P.
    RUSSIAN PHYSICS JOURNAL, 2013, 56 (03) : 269 - 272
  • [32] Lidar-based remote sensing of atmospheric boundary layer height over land and ocean
    Luo, T.
    Yuan, R.
    Wang, Z.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (01) : 173 - 182
  • [33] Remote sensing of the thermodynamic state of the atmospheric boundary layer by ground-based microwave radiometry
    Güldner, J
    Spänkuch, D
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2001, 18 (06) : 925 - 933
  • [34] Multifractal framework of partitioned turbulent data in atmospheric surface layer
    Maurya, Sonali
    Chandrasekar, A.
    Namboodiri, K. V. S.
    Rao, T. Narayana
    Kumar, S. Satheesh
    ENVIRONMENTAL FLUID MECHANICS, 2025, 25 (01)
  • [35] ATMOSPHERIC CONTRIBUTIONS TO REMOTE-SENSING DATA
    AGARWAL, VK
    BASU, S
    INDIAN JOURNAL OF RADIO & SPACE PHYSICS, 1988, 17 (06): : 264 - 270
  • [36] DYNAMICS OF SEA BREEZE IN ATMOSPHERIC BOUNDARY LAYER
    HSU, SA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1971, 52 (04): : 215 - &
  • [37] Algorithm for vertical distribution of boundary layer aerosol components in remote-sensing data
    Wang, Futing
    Yang, Ting
    Wang, Zifa
    Wang, Haibo
    Chen, Xi
    Sun, Yele
    Li, Jianjun
    Tang, Guigang
    Chai, Wenxuan
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2022, 15 (20) : 6127 - 6144
  • [38] Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
    Kotthaus, Simone
    Antonio Bravo-Aranda, Juan
    Coen, Martine Collaud
    Luis Guerrero-Rascado, Juan
    Costa, Maria Joao
    Cimini, Domenico
    O'Connor, Ewan J.
    Hervo, Maxime
    Alados-Arboledas, Lucas
    Jimenez-Portaz, Maria
    Mona, Lucia
    Ruffieux, Dominique
    Illingworth, Anthony
    Haeffelin, Martial
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2023, 16 (02) : 433 - 479
  • [39] TRACKING ATMOSPHERIC BOUNDARY LAYER IN TEHRAN USING COMBINED LIDAR REMOTE SENSING AND GROUND BASE MEASUREMENTS
    Panahifar, Hossein
    Khalesifard, Hamid
    28TH INTERNATIONAL LASER RADAR CONFERENCE (ILRC 28), 2018, 176
  • [40] Investigation of atmospheric boundary layer temperature, turbulence, and wind parameters on the basis of passive microwave remote sensing
    Kadygrov, EN
    Shur, GN
    Viazankin, AS
    RADIO SCIENCE, 2003, 38 (03)