Shape preserving cubic interpolation with nearly arc-length parameterization

被引:0
|
作者
Cai, F. [1 ]
Qiu, J.-X. [1 ]
机构
[1] Dept. of Mathematics and Computer, Changsha University, Changsha 410003, China
关键词
Curve fitting - Interpolation - Parameter estimation;
D O I
暂无
中图分类号
学科分类号
摘要
To generate nearly arc-length parameterized curve, some extra data points are often demanded for getting an acceptable precision. This article gives a theoretical criterion for how to select the extra points mentioned above. The presented method can improve effectively the precision of arc-length parameterization to meet the requirements of shape preserving interpolation.
引用
收藏
页码:1119 / 1122
相关论文
共 50 条
  • [21] Shape Preserving Rational Cubic Ball Interpolation for Positive Data
    Jaafar, Wan Nurhadani Wan
    Piah, Abd Rahni Mat
    Abbas, Muhammad
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 325 - 330
  • [22] Shape preserving rational cubic trigonometric fractal interpolation functions
    Tyada, K. R.
    Chand, A. K. B.
    Sajid, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 866 - 891
  • [23] SHAPE-PRESERVING INTERPOLATION BY PARAMETRIC PIECEWISE CUBIC POLYNOMIALS
    FERGUSON, JC
    PRUESS, S
    COMPUTER-AIDED DESIGN, 1991, 23 (07) : 498 - 505
  • [24] CONSTRAINED SHAPE PRESERVING RATIONAL CUBIC FRACTAL INTERPOLATION FUNCTIONS
    Chand, A. K. B.
    Tyada, K. R.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (01) : 75 - 105
  • [25] Curvature controlled arc-length method
    Szyszkowski, W
    Husband, JB
    COMPUTATIONAL MECHANICS, 1999, 24 (04) : 245 - 257
  • [26] Curve subdivision with arc-length control
    Victoria Hernández-Mederos
    Jorge C. Estrada-Sarlabous
    Silvio R. Morales
    Ioannis Ivrissimtzis
    Computing, 2009, 86 : 151 - 169
  • [27] Arc-length method for differential equations
    Jike W.
    Hui W.H.
    Hongli D.
    Applied Mathematics and Mechanics, 1999, 20 (8) : 936 - 942
  • [28] Curve subdivision with arc-length control
    Hernandez-Mederos, Victoria
    Estrada-Sarlabous, Jorge C.
    Morales, Silvio R.
    Ivrissimtzis, Ioannis
    COMPUTING, 2009, 86 (2-3) : 151 - 169
  • [29] ARC-length method for differential equations
    Wu, JK
    Hui, WH
    Ding, HL
    3RD INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 1998, : 391 - 395
  • [30] An adaptive parallel arc-length method
    Verhelst, H. M.
    Den Besten, J. H.
    Moller, M.
    COMPUTERS & STRUCTURES, 2024, 296