Analytic Lyapunov exponents in a classical nonlinear field equation

被引:0
|
作者
Franzosi, Roberto [1 ,4 ]
Gatto, Raoul [2 ]
Pettini, Giulio [1 ,5 ]
Pettini, Marco [3 ,6 ]
机构
[1] Dipartimento di Fisica Dell'Università, Largo Enrico Fermi 2, Firenze,50125, Italy
[2] Departement de Physique Théorique, Université de Genève, 24 Quai Ernest-Ansermet, Geneve,CH-1211, Switzerland
[3] Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, Firenze,50125, Italy
[4] Dipartimento di Fisica Del Politecnico, C. so Duca degli Abruzzi 24, Torino,10129, Italy
[5] INFN, Sezione di Firenze, Italy
[6] INFN, Sezione di Firenzem, INFM UdR di Firenze, Italy, United States
关键词
Hamiltonians - Lyapunov functions - Differential equations - Lyapunov methods;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that the nonlinear wave equation Εt2φ-Εx2φ-μ0Εx(Εxφ)0=0, which is the continuum limit of the Fermi-Pasta-Ulam β model, has a positive Lyapunov exponent λ1, whose analytic energy dependence is given. The result (a first example for field equations) is achieved by evaluating the lattice-spacing dependence of λ1 for the FPU model within the framework of a Riemannian description of Hamiltonian chaos. We also discuss a difficulty of the statistical mechanical treatment of this classical field system, which is absent in the dynamical description. © 2000 The American Physical Society.
引用
收藏
相关论文
共 50 条
  • [21] Analytic parametric solutions for the HRR nonlinear elastic field with low hardening exponents
    Sotiropoulou, A.
    Panayotounakou, N.
    Panayotounakos, D.
    ACTA MECHANICA, 2006, 183 (3-4) : 209 - 230
  • [22] Analytic parametric solutions for the HRR nonlinear elastic field with low hardening exponents
    A. Sotiropoulou
    N. Panayotounakou
    D. Panayotounakos
    Acta Mechanica, 2006, 183 : 209 - 230
  • [23] On Lyapunov exponents of the simplest time-lag equation
    Zagrebina, I. S.
    Popova, S. N.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2012, (01): : 54 - 54
  • [25] Field dependence of Lyapunov exponents for nonequilibrium systems
    Morriss, GP
    Dettmann, CP
    Isbister, DJ
    PHYSICAL REVIEW E, 1996, 54 (05): : 4748 - 4754
  • [26] Numerical solution of classical kicked rotor and local Lyapunov exponents
    Zheng, YD
    Kobe, DH
    PHYSICS LETTERS A, 2005, 334 (04) : 306 - 311
  • [27] Bohmian quantum mechanical and classical Lyapunov exponents for kicked rotor
    Zheng, Yindong
    Kobe, Donald H.
    CHAOS SOLITONS & FRACTALS, 2008, 36 (02) : 263 - 270
  • [28] Largest Lyapunov exponents and bifurcations of stochastic nonlinear systems
    To, CWS
    Li, DM
    SHOCK AND VIBRATION, 1996, 3 (04) : 313 - 320
  • [29] Sensitivity of Lyapunov Exponents in Design Optimization of Nonlinear Dampers
    Tamer, Aykut
    Masarati, Pierangelo
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (02):
  • [30] Lyapunov exponents maps and dynamics of nonlinear optical systems
    Grygiel, K
    Szlachetka, P
    13TH POLISH-CZECH-SLOVAK CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS, 2003, 5259 : 386 - 394