Bohmian quantum mechanical and classical Lyapunov exponents for kicked rotor

被引:2
|
作者
Zheng, Yindong [1 ]
Kobe, Donald H. [1 ]
机构
[1] Univ N Texas, Dept Phys, Denton, TX 76203 USA
关键词
D O I
10.1016/j.chaos.2006.06.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using de Broglie-Bohm approach to quantum theory, we show that the kicked rotor at quantum resonance exhibits quantum chaos for the control parameter K above a threshold. Lyapunov exponents are calculated from the method of Benettin et al. for bounded systems for both the quantum and classical kicked rotor. In the chaotic regime we find stability regions for control parameters equal to even and odd multiples of pi, but the quantum regions are only remnants of the classical ones. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 50 条
  • [1] Numerical solution of classical kicked rotor and local Lyapunov exponents
    Zheng, YD
    Kobe, DH
    PHYSICS LETTERS A, 2005, 334 (04) : 306 - 311
  • [2] CLASSICAL AND QUANTUM EIGENSTATES OF A KICKED ROTOR
    CHANG, SJ
    PEREZ, G
    CHINESE JOURNAL OF PHYSICS, 1992, 30 (04) : 479 - 489
  • [3] Momentum diffusion of the quantum kicked rotor: Comparison of Bohmian and standard quantum mechanics
    Zheng, Yindong
    Kobe, Donald H.
    CHAOS SOLITONS & FRACTALS, 2007, 34 (04) : 1105 - 1113
  • [4] Lyapunov exponents for the differences between quantum and classical dynamics
    Ballentine, LE
    PHYSICAL REVIEW A, 2001, 63 (02):
  • [5] Lyapunov exponents for the differences between quantum and classical dynamics
    Ballentine, L.E.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (02): : 024101 - 024101
  • [6] Phase noise in the delta kicked rotor: from quantum to classical
    White, D. H.
    Ruddell, S. K.
    Hoogerland, M. D.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [7] Classical and quantum localization and delocalization in the Fermi accelerator, kicked rotor and two-sided kicked rotor models
    Zaslavsky, M
    CHAOS, 1996, 6 (02) : 184 - 192
  • [8] Classical-quantum localization in one dimensional systems: The kicked rotor
    Hamilton, C.
    Perez-Rios, J.
    AIP ADVANCES, 2022, 12 (03)
  • [9] Quantum and classical superballistic transport in a relativistic kicked-rotor system
    Zhao, Qifang
    Mueller, Cord A.
    Gong, Jiangbin
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [10] On quantum Lyapunov exponents
    Majewski, Wladyslaw A.
    Marciniak, Marcin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31): : L523 - L528