Microstructure and wear resistance of multi-layer graphene doped AlCoCrFeNi2.1 high-entropy alloy self-lubricating coating prepared by laser cladding

被引:0
|
作者
Gu, Jin [1 ]
Sun, Yaoning [1 ]
Cheng, Wangjun [1 ]
Chong, Zhenzeng [1 ]
Ma, Xufeng [1 ]
Huang, Liufei [1 ]
Zhang, Shilin [1 ]
Chen, Yufeng [1 ]
机构
[1] Xinjiang Univ, Sch Mech Engn, Urumqi 830017, Xinjiang, Peoples R China
关键词
High-entropy alloys; Microstructure; Wear-resistant; Corrosion; MECHANICAL-PROPERTIES; CORROSION BEHAVIOR; HIGH-STRENGTH; AL ADDITION; PERFORMANCE;
D O I
10.1016/j.intermet.2024.108578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel AlCoCrFeNi2.1 high-entropy alloy self-lubricating coating was prepared by multilayer graphene (MLG) enhancement. The AlCoCrFeNi2.1-MLG (3 wt%) high-entropy alloy self-lubricating coating was prepared on AISI1045 steel using laser cladding by introducing lubricant named MLG. The microstructure, phase structure, wear resistance and corrosion performance of the AlCoCrFeNi2.1-MLG coating were studied. It is shown that the microstructure of the AlCoCrFeNi2.1-MLG coating has typical dendritic (DR) and interdendritic (ID) structures, with the dendrites consisting of high density M23C6 phase precipitation and FCC phase distributed in the interdendritic region. With the addition of MLG, the average hardness of the AlCoCrFeNi2.1 coating increases from 306.71 HV to 486.68 HV (an increase of 58.68 %). The average coefficient of friction decreases from 0.59 to 0.48 (a reduction of 22.92 %). The wear rate decreases from 1.678 x 10- 6 mm3 center dot N- 1 m- 1 to 0.825 x 10- 6 mm3 center dot N- 1 m- 1 (a reduction of 50.83 %). This is due to the formation of a lubricant film in the AlCoCrFeNi2.1MLG coating. The wear mechanism changes from plastic deformation and abrasive debris wear to slight delamination and spalling of the lubricant film. However, the corrosion performance of the AlCoCrFeNi2.1-MLG coating is slightly reduced by the occurrence of micro-electro-coupling corrosion on the corroded surface. The M23C6 phase is used as the anode and the FCC phase is used as the cathode. The subsequent generation of a passivation film prevents the appearance of severe electro-coupling corrosion. The wear resistance of the AlCoCrFeNi2.1-MLG coating is substantially improved while taking into account the corrosion performance. This study provides important values for laser cladding of self-lubricating composite coatings of high-entropy alloys.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition
    Jia, Yan-Jun
    Chen, Han-Ning
    Liang, Xiao-Dan
    RARE METALS, 2019, 38 (12) : 1153 - 1159
  • [32] Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition
    Yan-Jun Jia
    Han-Ning Chen
    Xiao-Dan Liang
    Rare Metals, 2019, 38 : 1153 - 1159
  • [33] Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition
    Yan-Jun Jia
    Han-Ning Chen
    Xiao-Dan Liang
    RareMetals, 2019, 38 (12) : 1153 - 1159
  • [34] Effect of Re addition on the microstructure and mechanical properties of AlCoCrFeNi2.1 eutectic high-entropy alloy
    Zhang, Xiaobo
    Li, Bo
    Zeng, Long
    Yi, Jiaojiao
    Wang, Binqiang
    Hu, Conghui
    Xia, Mingxu
    INTERMETALLICS, 2023, 154
  • [35] Near-surface self-resistance hydrogen effect of eutectic high-entropy alloy AlCoCrFeNi2.1
    Feng, Daochen
    Hu, Minghui
    Zheng, Wenjian
    Wang, Yu
    Ma, Yinghe
    Ren, Sendong
    Tan, Dapeng
    Yang, Jianguo
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 31 : 472 - 480
  • [36] Corrosion mechanism of electron beam remelted layer of eutectic high-entropy alloy AlCoCrFeNi2.1
    Feng, Daochen
    Zheng, Yifei
    Zheng, Wenjian
    Cai, Zhihui
    Jin, Zhangmin
    Ma, Yinghe
    Ren, Sendong
    Bao, Shiyi
    Tan, Dapeng
    Yang, Jianguo
    MATERIALS CHARACTERIZATION, 2025, 223
  • [37] Microstructure and Wear Resistance of High-Melting-Point AlCrFeMoNbxTiW High-Entropy Alloy Coating by Laser Cladding
    Guo, Yaxiong
    Liu, Qibin
    Zhou, Fang
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2017, 41 (12): : 1327 - 1332
  • [38] Enhanced hot corrosion resistance of AlCoCrFeNi2.1 high entropy alloy coatings by extreme high-speed laser cladding
    Zhang, Li
    Ji, Yan
    Wang, Yunxin
    Yang, Bin
    CORROSION SCIENCE, 2024, 240
  • [39] Microstructure and Corrosion Resistance of AlCoCrFeNiSix High-Entropy Alloy Coating by Laser Cladding
    Liu Hao
    Gao Qiang
    Hao Jingbin
    Zhang Guozhong
    Hu Yuan
    Yang Haifeng
    RARE METAL MATERIALS AND ENGINEERING, 2022, 51 (06) : 2199 - 2208
  • [40] INFLUENCE OF TiC CONTENT ON MICROSTRUCTURE AND PROPERTIES OF AlCoCrFeNi HIGH-ENTROPY ALLOY COATINGS PREPARED BY LASER CLADDING
    LI, Zhaotong
    Jing, Cainian
    Feng, Yan
    Wu, Zhonglin
    Lin, Tao
    Zhao, Jingrui
    Liu, Lei
    SURFACE REVIEW AND LETTERS, 2022, 29 (10)