Near-surface self-resistance hydrogen effect of eutectic high-entropy alloy AlCoCrFeNi2.1

被引:0
|
作者
Feng, Daochen [1 ,2 ]
Hu, Minghui [1 ]
Zheng, Wenjian [1 ,2 ]
Wang, Yu [1 ]
Ma, Yinghe [1 ,2 ]
Ren, Sendong [1 ,2 ]
Tan, Dapeng [1 ]
Yang, Jianguo [1 ,2 ]
机构
[1] Zhejiang Univ Technol, Sch Mech Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ Technol, Engn Res Ctr Proc Equipment & Remfg, Minist Educ, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Eutectic high -entropy alloy AlCoCrFeNi 2.1; Self -resistance hydrogen effect; Microstructure evolution; Near; -surface; Hydrogen embrittlement; SUPERABUNDANT VACANCY; MECHANICAL-PROPERTIES; GRAIN-BOUNDARY; HIGH-DUCTILITY; HIGH-STRENGTH; PRECIPITATION; EMBRITTLEMENT; SEGREGATION; MICROSTRUCTURE; STABILITY;
D O I
10.1016/j.jmrt.2024.06.092
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A series of engineering application studies related to hydrogen damage has been carried out for the eutectic highentropy alloy (HEA) AlCoCrFeNi2.1 with excellent comprehensive properties. This work mainly introduces the element segregation and microstructure evolution phenomenon near the surface phase boundary and around the precipitated phase found in the hydrogen damage experiment of the material. Studies have shown that the evolution of the near-surface phase boundary microstructure of HEAs caused by hydrogen charging has a great influence on the hydrogen trap density inside the alloy. The "self-resistance hydrogen effect" is produced, that is, hydrogen-induced microstructure evolution causes the effect of delayed hydrogen diffusion. In this phenomenon, the synergy between hydrogen atoms and vacancies and dislocations on the alloy surface is crucial.
引用
收藏
页码:472 / 480
页数:9
相关论文
共 50 条
  • [1] Hydrogen embrittlement of additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy
    Wan, Di
    Guan, Shuai
    Wang, Dong
    Lu, Xu
    Ma, Jun
    CORROSION SCIENCE, 2022, 195
  • [2] Microstructural origins of impact resistance of AlCoCrFeNi2.1 eutectic high-entropy alloy
    Li, Jiansheng
    Zhou, Jian
    Liu, Yanfang
    Wei, Kang
    Liu, Jianfeng
    Xi, Yichun
    Li, Zhumin
    Liu, Tong
    Jiang, Wei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 890
  • [3] Study on the strengthening mechanism of AlCoCrFeNi2.1 eutectic high-entropy alloy
    Gao, Yang
    Ge, Fuyu
    Cui, Yan
    Zhang, Xin
    Han, Jian
    Cai, Yangchuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [4] Laser beam welding of AlCoCrFeNi2.1 eutectic high-entropy alloy
    Zhang, Mina
    Wang, Dafeng
    He, Longjun
    Ye, Xuyang
    Zhang, Wenwu
    MATERIALS LETTERS, 2022, 308
  • [5] Ultrafine-Grained AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
    Wani, I. S.
    Bhattacharjee, T.
    Sheikh, S.
    Lu, Y. P.
    Chatterjee, S.
    Bhattacharjee, P. P.
    Guo, S.
    Tsuji, N.
    MATERIALS RESEARCH LETTERS, 2016, 4 (03): : 174 - 179
  • [6] ELECTRON BEAM WELDING OF AlCoCrFeNi2.1 EUTECTIC HIGH-ENTROPY ALLOY
    Roncak, Jan
    Adam, Ondrej
    Mueller, Peter
    Zobac, Martin
    31ST INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, METAL 2022, 2022, : 773 - 778
  • [7] Effect of Alloying on Microstructure and Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
    Tian, Xue-Yao
    Zhang, Hong-Liang
    Nong, Zhi-Sheng
    Cui, Xue
    Gu, Ze-Hao
    Liu, Teng
    Li, Hong-Mei
    Arzikulov, Eshkuvat
    MATERIALS, 2024, 17 (18)
  • [8] The Effect of Zirconium on the Microstructure and Properties of Cast AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
    Li, Rongbin
    Sun, Weichu
    Li, Saiya
    Cheng, Zhijun
    MATERIALS, 2024, 17 (23)
  • [9] A quantitative understanding on the mechanical behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy
    Wang, Yuting
    Chen, Wei
    Zhang, Jie
    Zhou, Jianqiu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 850
  • [10] The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1
    Zhang, Yaoli
    Li, Jinguo
    Wang, Xinguang
    Lu, Yiping
    Zhou, Yizhou
    Sun, Xiaofeng
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (05) : 902 - 906