Cooperative Multi-Target Positioning for Cell-Free Massive MIMO With Multi-Agent Reinforcement Learning

被引:0
|
作者
Liu, Ziheng [1 ,2 ]
Zhang, Jiayi [1 ,2 ]
Shi, Enyu [1 ,2 ]
Zhu, Yiyang [1 ,2 ]
Ng, Derrick Wing Kwan [3 ]
Ai, Bo [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Frontiers Sci Ctr Smart High Speed Railway Syst, Beijing 100044, Peoples R China
[3] Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
基金
中国国家自然科学基金;
关键词
Computer architecture; Wireless communication; Scalability; Artificial neural networks; Estimation; Computational complexity; Accuracy; Reinforcement learning; Databases; Channel estimation; Cell-free massive MIMO; cooperative WKNN; multi-agent reinforcement learning; user positioning; COMMUNICATION; TECHNOLOGIES; OPTIMIZATION; NETWORKS;
D O I
10.1109/TWC.2024.3478232
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cell-free massive multiple-input multiple-output (mMIMO) is a promising technology to empower next-generation mobile communication networks. In this paper, to address the computational complexity associated with conventional fingerprint positioning, we consider a novel cooperative positioning architecture that involves certain relevant access points (APs) to establish positioning similarity coefficients. Then, we propose an innovative joint positioning and correction framework employing multi-agent reinforcement learning (MARL) to tackle the challenges of high-dimensional sophisticated signal processing, which mainly leverages on the received signal strength information for preliminary positioning, supplemented by the angle of arrival information to refine the initial position estimation. Moreover, to mitigate the bias effects originating from remote APs, we design a cooperative weighted K-nearest neighbor (Co-WKNN)-based estimation scheme to select APs with a high correlation to participate in user positioning. In the numerical results, we present comparisons of various user positioning schemes, which reveal that the proposed MARL-based positioning scheme with Co-WKNN can effectively improve positioning performance. It is important to note that the cooperative positioning architecture is a critical element in striking a balance between positioning performance and computational complexity.
引用
收藏
页码:19034 / 19049
页数:16
相关论文
共 50 条
  • [31] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [32] Levels of Realism for Cooperative Multi-agent Reinforcement Learning
    Cunningham, Bryan
    Cao, Yong
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 573 - 582
  • [33] Cooperative Multi-agent Reinforcement Learning for Inventory Management
    Khirwar, Madhav
    Gurumoorthy, Karthik S.
    Jain, Ankit Ajit
    Manchenahally, Shantala
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VI, 2023, 14174 : 619 - 634
  • [34] The Cooperative Reinforcement Learning in a Multi-Agent Design System
    Liu, Hong
    Wang, Jihua
    PROCEEDINGS OF THE 2013 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2013, : 139 - 144
  • [35] Cooperative Multi-Agent Reinforcement Learning in Express System
    Li, Yexin
    Zheng, Yu
    Yang, Qiang
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 805 - 814
  • [36] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    Applied Intelligence, 2023, 53 : 13677 - 13722
  • [37] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [38] Centralized reinforcement learning for multi-agent cooperative environments
    Chengxuan Lu
    Qihao Bao
    Shaojie Xia
    Chongxiao Qu
    Evolutionary Intelligence, 2024, 17 : 267 - 273
  • [39] Centralized reinforcement learning for multi-agent cooperative environments
    Lu, Chengxuan
    Bao, Qihao
    Xia, Shaojie
    Qu, Chongxiao
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 267 - 273
  • [40] Cooperative multi-agent game based on reinforcement learning
    Liu, Hongbo
    HIGH-CONFIDENCE COMPUTING, 2024, 4 (01):