Multimodal approach to optimize biopsy decision-making for PI-RADS 3 lesions on multiparametric MRI

被引:0
|
作者
Esengur, Omer Tarik
Yilmaz, Enis C.
Ozyoruk, Kutsev B.
Chen, Alex
Lay, Nathan S.
Gelikman, David G.
Merino, Maria J.
Gurram, Sandeep
Wood, Bradford J. [2 ]
Choyke, Peter L.
Harmon, Stephanie A.
Pinto, Peter A.
Turkbey, Baris [1 ]
机构
[1] NCI, NIH, Mol Imaging Branch, 10 Ctr Dr, MSC 1182, Bldg 10, Room B3B85, Bethesda, MD 20892 USA
[2] NCI, NIH, Ctr Intervent Oncol, Bethesda, MD USA
关键词
Prostate cancer; PI-RADS; 3; lesions; Artificial intelligence; PSA density; Multiparametric MRI; Biopsy decision-making; PROSTATE-CANCER DETECTION; ARTIFICIAL-INTELLIGENCE;
D O I
10.1016/j.clinimag.2024.110363
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop and evaluate a multimodal approach including clinical parameters and biparametric MRIbased artificial intelligence (AI) model for determining the necessity of prostate biopsy in patients with PIRADS 3 lesions. Methods: This retrospective study included a prospectively recruited patient cohort with PI-RADS 3 lesions who underwent prostate MRI and MRI/US fusion-guided biopsy between April 2019 and February 2024 in a single institution. The study examined demographic data, PSA and PSA density (PSAD) levels, prostate volumes, prospective PI-RADS v2.1-compliant interpretations of a genitourinary radiologist, lesion characteristics, history of prior biopsies, and AI evaluations, focusing mainly on the detection of clinically significant prostate cancer (csPCa) (International Society of Urological Pathology grade group >2) on MRI/US fusion-guided biopsy. The AI model lesion segmentations were compared to manual segmentations and biopsy results. The statistical methods employed included Fisher's exact test and logistic regression. Results: The cohort was comprised of 248 patients with 312 PI-RADS 3 lesions in total (n = 268 non-csPCa, n = 44 csPCa). The AI model's negative predictive value (NPV) was 89.2 % for csPCa in all lesions. In patient-level analysis, the NPV was 91.2 % for patients with a highest PI-RADS score of 3. PSAD was a significant predictor of csPCa (odds ratio = 5.8, p = 0.038). Combining AI and PSAD, where AI correctly mapped a lesion or PSAD >0.15 ng/mL2, achieved higher sensitivity (77.8 %) while maintaining a high NPV (93.1 %). Conclusion: Combining AI and PSAD has the potential to enhance biopsy decision-making for PI-RADS 3 lesions by minimizing missed csPCa occurrences and reducing unnecessary biopsies.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Reconciling discordance between PI-RADS 4 lesions and targeted biopsy: Early experience of a multidisciplinary quality improvement protocol with PI-RADS 4 subcategorization
    Deivasigamani, Sriram
    Kotamarti, Srinath
    Adams, Eric S.
    Seguier, Denis
    Zhang, Dylan
    Michael, Zoe
    Polascik, Thomas J.
    Gupta, Rajan T.
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 165
  • [42] Post-MRI transrectal micro-ultrasonography of transition zone PI-RADS > 2 lesions for biopsy guidance
    François Cornud
    Arnaud Lefevre
    Philippe Camparo
    Maxime Barat
    Olivier Dumonceau
    Marc Galiano
    Thierry Flam
    Philippe Soyer
    Matthias Barral
    European Radiology, 2022, 32 : 7504 - 7512
  • [43] Multiparametric MRI prostate PI-RAD scoring in a district general hospital: correlating PI-RADS 3 results with histological findings
    Aslam, Sarmad
    Tsang, Jeffrey
    Bickle, Ian
    Saiepour, Ali
    BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1131):
  • [44] The PI-RADS 3 lesion. Can we use a higher PSA density to reassure patients with MRI PI-RADS 3 score?
    Natarajan, M.
    Yousaf, A.
    Abou Chedid, W.
    Moschonas, D.
    Patil, K.
    Kusuma, M.
    Langley, S.
    Perry, M.
    BRITISH JOURNAL OF SURGERY, 2023, 110 : III12 - III12
  • [45] CHARACTERISTICS OF PI-RADS 5 LESIONS WITH A NEGATIVE OR GLEASON GRADE GROUP 1 BIOPSY
    Webb, Lindsey T.
    Diaz, Gabriela M.
    Velasquez, Eusebio Luna
    Goberdhan, Sankalp
    Khajir, Ghazal
    Sundaresan, Vinaik
    Leapman, Michael S.
    Sprenkle, Preston C.
    JOURNAL OF UROLOGY, 2024, 211 (05): : E315 - E315
  • [46] MRI in early prostate cancer detection: how to manage indeterminate or equivocal PI-RADS 3 lesions?
    Schoots, Ivo G.
    TRANSLATIONAL ANDROLOGY AND UROLOGY, 2018, 7 (01) : 70 - +
  • [47] Multiparametric MRI for Prostate Cancer Characterization: Combined Use of Radiomics Model with PI-RADS and Clinical Parameters
    Woznicki, Piotr
    Westhoff, Niklas
    Huber, Thomas
    Riffel, Philipp
    Froelich, Matthias F.
    Gresser, Eva
    von Hardenberg, Jost
    Muehlberg, Alexander
    Michel, Maurice Stephan
    Schoenberg, Stefan O.
    Noerenberg, Dominik
    CANCERS, 2020, 12 (07) : 1 - 14
  • [48] Use of Molecular Imaging to Further Investigate PI-RADS 3 Lesions
    Turkbey, Baris
    RADIOLOGY, 2024, 311 (02)
  • [49] Exploring the value of multiparametric quantitative magnetic resonance imaging in avoiding unnecessary biopsy in patients with PI-RADS 3-4
    Gong, Zijian
    Jiang, Fei
    Liu, Zhixuan
    Chen, Zefei
    Peng, Yun
    Qiu, Jia
    Ying, Hongxing
    Gong, Lianggeng
    Dai, Jiankun
    Ye, Yinquan
    ABDOMINAL RADIOLOGY, 2025,
  • [50] The Prevalence of Prostate Cancer in Biopsy Samples of Lesions with PI-RADS 2 Score in Multiparametric Magnetic Resonance Imaging: A Cross-sectional Study
    Karami, Hossein
    Ghafoori, Mahyar
    Dashti, Reza
    INTERNATIONAL JOURNAL OF CANCER MANAGEMENT, 2023, 16 (01)