Multimodal approach to optimize biopsy decision-making for PI-RADS 3 lesions on multiparametric MRI

被引:0
|
作者
Esengur, Omer Tarik
Yilmaz, Enis C.
Ozyoruk, Kutsev B.
Chen, Alex
Lay, Nathan S.
Gelikman, David G.
Merino, Maria J.
Gurram, Sandeep
Wood, Bradford J. [2 ]
Choyke, Peter L.
Harmon, Stephanie A.
Pinto, Peter A.
Turkbey, Baris [1 ]
机构
[1] NCI, NIH, Mol Imaging Branch, 10 Ctr Dr, MSC 1182, Bldg 10, Room B3B85, Bethesda, MD 20892 USA
[2] NCI, NIH, Ctr Intervent Oncol, Bethesda, MD USA
关键词
Prostate cancer; PI-RADS; 3; lesions; Artificial intelligence; PSA density; Multiparametric MRI; Biopsy decision-making; PROSTATE-CANCER DETECTION; ARTIFICIAL-INTELLIGENCE;
D O I
10.1016/j.clinimag.2024.110363
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop and evaluate a multimodal approach including clinical parameters and biparametric MRIbased artificial intelligence (AI) model for determining the necessity of prostate biopsy in patients with PIRADS 3 lesions. Methods: This retrospective study included a prospectively recruited patient cohort with PI-RADS 3 lesions who underwent prostate MRI and MRI/US fusion-guided biopsy between April 2019 and February 2024 in a single institution. The study examined demographic data, PSA and PSA density (PSAD) levels, prostate volumes, prospective PI-RADS v2.1-compliant interpretations of a genitourinary radiologist, lesion characteristics, history of prior biopsies, and AI evaluations, focusing mainly on the detection of clinically significant prostate cancer (csPCa) (International Society of Urological Pathology grade group >2) on MRI/US fusion-guided biopsy. The AI model lesion segmentations were compared to manual segmentations and biopsy results. The statistical methods employed included Fisher's exact test and logistic regression. Results: The cohort was comprised of 248 patients with 312 PI-RADS 3 lesions in total (n = 268 non-csPCa, n = 44 csPCa). The AI model's negative predictive value (NPV) was 89.2 % for csPCa in all lesions. In patient-level analysis, the NPV was 91.2 % for patients with a highest PI-RADS score of 3. PSAD was a significant predictor of csPCa (odds ratio = 5.8, p = 0.038). Combining AI and PSAD, where AI correctly mapped a lesion or PSAD >0.15 ng/mL2, achieved higher sensitivity (77.8 %) while maintaining a high NPV (93.1 %). Conclusion: Combining AI and PSAD has the potential to enhance biopsy decision-making for PI-RADS 3 lesions by minimizing missed csPCa occurrences and reducing unnecessary biopsies.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Index lesion detection in multifocal prostate cancer: Simplified PI-RADS biparametric MRI vs PI-RADS v2.1 multiparametric MRI
    Scialpi, Michele
    Martorana, Eugenio
    Torre, Riccardo
    Scalera, Giovanni Battista
    Belatti, Eugenio
    Improta, Antonio
    Aisa, Maria Cristina
    Burani, Aldo
    Santini, Nicola
    D'Andrea, Alfredo
    Mancioli, Francesco Maria
    Scialpi, Pietro
    Di Blasi, Aldo
    CLINICAL IMAGING, 2023, 94 : 108 - 115
  • [22] Avoiding biopsy in men with PI-RADS scores 1 and 2 on multiparametric MRI of the prostate, ready for prime time?
    Frydenberg, Mark
    BJU INTERNATIONAL, 2019, 124 (05) : 715 - 716
  • [23] The Relationship between PI-RADS Categories and Incidental Findings in Multiparametric Prostate MRI
    Ediz, Suna Sahin
    Gunduz, Nesrin
    JCPSP-JOURNAL OF THE COLLEGE OF PHYSICIANS AND SURGEONS PAKISTAN, 2021, 31 (09): : 1030 - 1034
  • [24] Follow-up MR imaging of PI-RADS 3 and PI-RADS 4 prostate lesions
    Hauth, Elke
    Jaeger, Horst
    Hohmuth, Horst
    Beer, Meinrad
    CLINICAL IMAGING, 2017, 43 : 64 - 68
  • [25] Multiparametric prostate MRI and structured reporting: benefits and challenges in the PI-RADS era
    Sanas Mir-Bashiri
    Kaneschka Yaqubi
    Piotr Woźnicki
    Niklas Westhoff
    Jost von Hardenberg
    Thomas Huber
    Matthias F. Froelich
    Wieland H. Sommer
    Maximilian F. Reiser
    Stefan O. Schoenberg
    Dominik Nörenberg
    Chinese Journal of Academic Radiology, 2021, 4 : 21 - 40
  • [26] Multiparametric prostate MRI and structured reporting: benefits and challenges in the PI-RADS era
    Mir-Bashiri, Sanas
    Yaqubi, Kaneschka
    Woznicki, Piotr
    Westhoff, Niklas
    von Hardenberg, Jost
    Huber, Thomas
    Froelich, Matthias F.
    Sommer, Wieland H.
    Reiser, Maximilian F.
    Schoenberg, Stefan O.
    Noerenberg, Dominik
    CHINESE JOURNAL OF ACADEMIC RADIOLOGY, 2021, 4 (01) : 21 - 40
  • [27] Opportunities for multiparametric MRI with PI-RADS v2 to make a difference
    Tempany, Clare
    FUTURE ONCOLOGY, 2016, 12 (21) : 2397 - 2399
  • [28] The value of 68Ga-PSMA PET/MRI for classifying PI-RADS 3 lesions on multiparametric MRI: A prospective single-center study
    Shi, J.
    Li, D. Y.
    Chen, M. X.
    Fu, Y.
    Peng, S.
    Zhang, Q.
    Liang, J.
    Lu, Q.
    Lu, J. M.
    Ai, S. Y.
    Wang, F.
    Qiu, X. F.
    Guo, H.
    EUROPEAN UROLOGY, 2024, 85 : S461 - S462
  • [29] Detection and Localization of Prostate Cancer at 3-T Multiparametric MRI Using PI-RADS Segmentation
    Wibulpolprasert, Pornphan
    Raman, Steven S.
    Hsu, William
    Margolis, Daniel J. A.
    Asvadi, Nazanin H.
    Khoshnoodi, Pooria
    Moshksar, Amin
    Tan, Nelly
    Ahuia, Preeti
    Maehara, Cleo K.
    Huang, Jiaoti
    Sayre, James
    Lu, David S. K.
    Reiter, Robert E.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (06) : W122 - W131
  • [30] Joint Cancer Segmentation and PI-RADS Classification on Multiparametric MRI Using MiniSegCaps Network
    Jiang, Wenting
    Lin, Yingying
    Vardhanabhuti, Varut
    Ming, Yanzhen
    Cao, Peng
    DIAGNOSTICS, 2023, 13 (04)