Multimodal approach to optimize biopsy decision-making for PI-RADS 3 lesions on multiparametric MRI

被引:0
|
作者
Esengur, Omer Tarik
Yilmaz, Enis C.
Ozyoruk, Kutsev B.
Chen, Alex
Lay, Nathan S.
Gelikman, David G.
Merino, Maria J.
Gurram, Sandeep
Wood, Bradford J. [2 ]
Choyke, Peter L.
Harmon, Stephanie A.
Pinto, Peter A.
Turkbey, Baris [1 ]
机构
[1] NCI, NIH, Mol Imaging Branch, 10 Ctr Dr, MSC 1182, Bldg 10, Room B3B85, Bethesda, MD 20892 USA
[2] NCI, NIH, Ctr Intervent Oncol, Bethesda, MD USA
关键词
Prostate cancer; PI-RADS; 3; lesions; Artificial intelligence; PSA density; Multiparametric MRI; Biopsy decision-making; PROSTATE-CANCER DETECTION; ARTIFICIAL-INTELLIGENCE;
D O I
10.1016/j.clinimag.2024.110363
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop and evaluate a multimodal approach including clinical parameters and biparametric MRIbased artificial intelligence (AI) model for determining the necessity of prostate biopsy in patients with PIRADS 3 lesions. Methods: This retrospective study included a prospectively recruited patient cohort with PI-RADS 3 lesions who underwent prostate MRI and MRI/US fusion-guided biopsy between April 2019 and February 2024 in a single institution. The study examined demographic data, PSA and PSA density (PSAD) levels, prostate volumes, prospective PI-RADS v2.1-compliant interpretations of a genitourinary radiologist, lesion characteristics, history of prior biopsies, and AI evaluations, focusing mainly on the detection of clinically significant prostate cancer (csPCa) (International Society of Urological Pathology grade group >2) on MRI/US fusion-guided biopsy. The AI model lesion segmentations were compared to manual segmentations and biopsy results. The statistical methods employed included Fisher's exact test and logistic regression. Results: The cohort was comprised of 248 patients with 312 PI-RADS 3 lesions in total (n = 268 non-csPCa, n = 44 csPCa). The AI model's negative predictive value (NPV) was 89.2 % for csPCa in all lesions. In patient-level analysis, the NPV was 91.2 % for patients with a highest PI-RADS score of 3. PSAD was a significant predictor of csPCa (odds ratio = 5.8, p = 0.038). Combining AI and PSAD, where AI correctly mapped a lesion or PSAD >0.15 ng/mL2, achieved higher sensitivity (77.8 %) while maintaining a high NPV (93.1 %). Conclusion: Combining AI and PSAD has the potential to enhance biopsy decision-making for PI-RADS 3 lesions by minimizing missed csPCa occurrences and reducing unnecessary biopsies.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] PI-RADS Steering Committee: The PI-RADS Multiparametric MRI and MRI-directed Biopsy Pathway
    Padhani, Anwar R.
    Barentsz, Jelle
    Villeirs, Geert
    Rosenkrantz, Andrew B.
    Margolis, Daniel J.
    Turkbey, Bares
    Thoeny, Harriet C.
    Cornud, Francois
    Haider, Masoom A.
    Macura, Katarzyna F.
    Tempany, Clare M.
    Verma, Sadhna
    Weinreb, Jeffery C.
    RADIOLOGY, 2019, 292 (02) : 464 - 474
  • [2] Evaluation of a multiparametric MRI radiomic-based approach for stratification of equivocal PI-RADS 3 and upgraded PI-RADS 4 prostatic lesions
    Valentina Brancato
    Marco Aiello
    Luca Basso
    Serena Monti
    Luigi Palumbo
    Giuseppe Di Costanzo
    Marco Salvatore
    Alfonso Ragozzino
    Carlo Cavaliere
    Scientific Reports, 11
  • [3] Evaluation of a multiparametric MRI radiomic-based approach for stratification of equivocal PI-RADS 3 and upgraded PI-RADS 4 prostatic lesions
    Brancato, Valentina
    Aiello, Marco
    Basso, Luca
    Monti, Serena
    Palumbo, Luigi
    Di Costanzo, Giuseppe
    Salvatore, Marco
    Ragozzino, Alfonso
    Cavaliere, Carlo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Association of PI-RADS score of multiparametric MRI and prostate biopsy results
    Gupta, D. R.
    Khera, Rakesh
    Ahlawat, Kulbir
    Yadav, Rajiv
    Bansal, Somender
    INTERNATIONAL JOURNAL OF UROLOGY, 2016, 23 : 66 - 66
  • [5] PI-RADS: multiparametric MRI in prostate cancer
    Aileen O’Shea
    Mukesh Harisinghani
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2022, 35 : 523 - 532
  • [6] PI-RADS: multiparametric MRI in prostate cancer
    O'Shea, Aileen
    Harisinghani, Mukesh
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (04) : 523 - 532
  • [7] Impact of PI-RADS Upgrading Rules on Prostate Cancer Detection and Biopsy Decision-Making
    不详
    RADIOLOGY-IMAGING CANCER, 2024, 6 (02):
  • [8] NECESSITY OF SYSTEMATIC BIOPSIES FOR PATIENTS WITH PI-RADS 5 LESIONS ON MULTIPARAMETRIC MRI
    Avda, Yuval
    Soodana-Prakash, Nachiketh
    Han, Sunwoo
    Reis, Isildinha
    Thomas, Jamie
    Ryan, Jonathan T.
    Nahar, Bruno
    Ritch, Chad R.
    Gonzalgo, Mark L.
    Parekh, Dipen J.
    Punnen, Sanoj
    JOURNAL OF UROLOGY, 2024, 211 (05): : E789 - E790
  • [9] NEED FOR SYSTEMIC 12-CORE BIOPSY CONCURRENT WITH MRI TARGETED BIOPSY OF PI-RADS 4 AND PI-RADS 5 LESIONS
    Yaguchi, Grace
    Deebajah, Mustafa
    Williamson, Sean
    Gupta, Nilesh
    Pantelic, Milan
    Park, Hakmin
    Peabody, James
    Menon, Mani
    Alanee, Shaheen
    Dabaja, Ali
    JOURNAL OF UROLOGY, 2019, 201 (04): : E177 - E178
  • [10] Simplified PI-RADS with Biparametric MRI: A Practical Approach to Improve Management of PI-RADS Version 2 Category 3 Lesions Response
    Turkbey, Baris
    Choyke, Peter L.
    RADIOLOGY, 2018, 289 (03) : 882 - 883