B-spline with symplectic algorithm method for solution of time-dependent schrödinger equations

被引:10
|
作者
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
Chin. Phys. Lett. | 2006年 / 9卷 / 2403-2406期
关键词
Interpolation;
D O I
10.1088/0256-307X/23/9/015
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Time-dependent variational approach to solve multi-dimensional time-dependent Schrödinger equation
    He, Mingrui
    Wang, Zhe
    Yao, Lufeng
    Li, Yang
    CHINESE PHYSICS B, 2023, 32 (12)
  • [42] Time-dependent variational approach to solve multi-dimensional time-dependent Schr?dinger equation
    何明睿
    王哲
    姚陆锋
    李洋
    Chinese Physics B, 2023, 32 (12) : 414 - 419
  • [43] Time-Dependent B-Spline R-Matrix Method without Explicit R-Matrix Calculation
    Lee, Min-Ho
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 73 (07) : 893 - 900
  • [44] B-spline wavelet operational method for numerical solution of time-space fractional partial differential equations
    Kargar, Zeynab
    Saeedi, Habibollah
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2017, 15 (04)
  • [45] Fractional B-spline collocation method for the numerical solution of the fractional pantograph differential equations
    Bivani, S.
    Ghasemi, M.
    Goligerdian, A.
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [46] An efficient computational scheme for solving coupled time-fractional Schrödinger equation via cubic B-spline functions
    Hayat, Afzaal Mubashir
    Abbas, Muhammad
    Emadifar, Homan
    Alzaidi, Ahmed S. M.
    Nazir, Tahir
    Abdullah, Farah Aini
    PLOS ONE, 2024, 19 (05):
  • [47] Low order nonconforming finite element method for time-dependent nonlinear Schrödinger equation
    Chao Xu
    Jiaquan Zhou
    Dongyang Shi
    Houchao Zhang
    Boundary Value Problems, 2018
  • [48] Tenth-Order Accurate Numerical Method for Solving the Time-Dependent Schrödinger Equation
    M. A. Zakharov
    Computational Mathematics and Mathematical Physics, 2024, 64 : 248 - 265
  • [49] On polynomial Trefftz spaces for the linear time-dependent Schrödinger equation☆
    Gomez, Sergio
    Moiola, Andrea
    Perugia, Ilaria
    Stocker, Paul
    APPLIED MATHEMATICS LETTERS, 2023, 146
  • [50] Solving the time-dependent Schrödinger equation via Laplace transform
    Riahi N.
    Quantum Studies: Mathematics and Foundations, 2017, 4 (2) : 103 - 126