B-spline with symplectic algorithm method for solution of time-dependent schrödinger equations

被引:10
|
作者
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
Chin. Phys. Lett. | 2006年 / 9卷 / 2403-2406期
关键词
Interpolation;
D O I
10.1088/0256-307X/23/9/015
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Modulation space estimates for Schrödinger type equations with time-dependent potentials
    Wei Wei
    Czechoslovak Mathematical Journal, 2014, 64 : 539 - 566
  • [22] Explicit euler method for solving the time-dependent schrödinger equation
    Sturzu, I.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (05):
  • [23] Symbolic algorithm for factorization of the evolution operator of the time-dependent Schrödinger equation
    S. I. Vinitsky
    V. P. Gerdt
    A. A. Gusev
    M. S. Kaschiev
    V. A. Rostovtsev
    V. N. Samoylov
    T. V. Tupikova
    Y. Uwano
    Programming and Computer Software, 2006, 32 : 103 - 113
  • [24] Multi-symplectic method for the coupled Schrdinger–KdV equations
    张弘
    宋松和
    周炜恩
    陈绪栋
    Chinese Physics B, 2014, 23 (08) : 230 - 236
  • [25] Asymptotic behavior of solutions to nonlinear Schrödinger equations with time-dependent harmonic potentials
    Masaki Kawamoto
    Ryo Muramatsu
    Journal of Evolution Equations, 2021, 21 : 699 - 723
  • [26] Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations
    Andrea Sacchetti
    Annales Henri Poincaré, 2020, 21 : 627 - 648
  • [27] Universal time-dependent deformations of Schrödinger geometry
    Yu Nakayama
    Journal of High Energy Physics, 2010
  • [28] On a collocation B-spline method for the solution of the Navier-Stokes equations
    Botella, O
    COMPUTERS & FLUIDS, 2002, 31 (4-7) : 397 - 420
  • [29] Solution of the time-dependent Schrdinger equation with absorbing boundary conditions附视频
    陈志东
    张进宇
    余志平
    半导体学报, 2009, (01) : 1 - 6
  • [30] Painlevé Integrability of Nonlinear Schrdinger Equations with both Space-and Time-Dependent Coefficients
    Kyoung Ho Han
    H.J.Shin
    Communications in Theoretical Physics, 2010, 54 (12) : 1101 - 1108