Consistency of multiclass empirical risk minimization methods based on convex loss

被引:0
|
作者
Department of Mathematics, LMIB, Beijing University of Aeronautics and Astronautics, Beijing 100083, China [1 ]
不详 [2 ]
机构
来源
J. Mach. Learn. Res. | 2006年 / 2435-2447期
关键词
13;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] On the convergence of some iterative methods for convex minimization
    Lemaire, B
    RECENT DEVELOPMENTS IN OPTIMIZATION, 1995, 429 : 252 - 268
  • [42] On the principle of empirical risk minimization based on averaging aggregation functions
    Z. M. Shibzukhov
    Doklady Mathematics, 2017, 96 : 494 - 497
  • [43] On the principle of empirical risk minimization based on averaging aggregation functions
    Shibzukhov, Z. M.
    DOKLADY MATHEMATICS, 2017, 96 (02) : 494 - 497
  • [44] Empirical risk minimization as parameter choice rule for general linear regularization methods
    Li, Housen
    Werner, Frank
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (01): : 405 - 427
  • [45] Distributed block-diagonal approximation methods for regularized empirical risk minimization
    Ching-pei Lee
    Kai-Wei Chang
    Machine Learning, 2020, 109 : 813 - 852
  • [46] Efficient Nonconvex Empirical Risk Minimization via Adaptive Sample Size Methods
    Mokhtari, Aryan
    Ozdaglar, Asuman
    Jadbabaie, Ali
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [47] Distributed block-diagonal approximation methods for regularized empirical risk minimization
    Lee, Ching-pei
    Chang, Kai-Wei
    MACHINE LEARNING, 2020, 109 (04) : 813 - 852
  • [48] Lasso with convex loss: Model selection consistency and estimation
    Rejchel, Wojciech
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (07) : 1989 - 2004
  • [49] Communication Efficient Coresets for Empirical Loss Minimization
    Reddi, Sashank J.
    Poczos, Barnabas
    Smola, Alex
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2015, : 752 - 761
  • [50] Local complexities for empirical risk minimization
    Bartlett, PL
    Mendelson, S
    Philips, P
    LEARNING THEORY, PROCEEDINGS, 2004, 3120 : 270 - 284