Consistency of multiclass empirical risk minimization methods based on convex loss

被引:0
|
作者
Department of Mathematics, LMIB, Beijing University of Aeronautics and Astronautics, Beijing 100083, China [1 ]
不详 [2 ]
机构
来源
J. Mach. Learn. Res. | 2006年 / 2435-2447期
关键词
13;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Distribution-free consistency of empirical risk minimization and support vector regression
    Lee, Ji-Woong
    Khargonekar, Pramod P.
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2009, 21 (02) : 111 - 125
  • [22] Distribution-free consistency of empirical risk minimization and support vector regression
    Ji-Woong Lee
    Pramod P. Khargonekar
    Mathematics of Control, Signals, and Systems, 2009, 21 : 111 - 125
  • [23] Adversarial Multiclass Classification: A Risk Minimization Perspective
    Fathony, Rizal
    Liu, Anqi
    Asif, Kaiser
    Ziebart, Brian D.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [24] Ranking - Convex risk minimization
    Rejchel, Wojciech
    World Academy of Science, Engineering and Technology, 2009, 32 : 172 - 178
  • [25] Ranking - convex risk minimization
    Rejchel, Wojciech
    World Academy of Science, Engineering and Technology, 2009, 56 : 172 - 178
  • [26] Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
    Sayan Mukherjee
    Partha Niyogi
    Tomaso Poggio
    Ryan Rifkin
    Advances in Computational Mathematics, 2006, 25 : 161 - 193
  • [27] Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
    Mukherjee, Sayan
    Niyogi, Partha
    Poggio, Tomaso
    Rifkin, Ryan
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (1-3) : 161 - 193
  • [28] Optimal voltage control for loss minimization based on sequential convex programming
    Necoara, Ion
    Nedelcu, Valentin
    Clipici, Dragos
    Toma, Lucian
    Bulac, Constantin
    2016 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2016,
  • [29] OPTIMAL METHODS OF SMOOTH CONVEX MINIMIZATION
    NEMIROVSKII, AS
    NESTEROV, YE
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1985, 25 (02): : 21 - 30
  • [30] Semisupervised Ordinal Regression Based on Empirical Risk Minimization
    Tsuchiya, Taira
    Charoenphakdee, Nontawat
    Sato, Issei
    Sugiyama, Masashi
    NEURAL COMPUTATION, 2021, 33 (12) : 3361 - 3412