Upper bound for the largest Z-eigenvalue of positive tensors

被引:0
|
作者
机构
[1] He, Jun
[2] Huang, Ting-Zhu
来源
He, J. (hejunfan1@163.com) | 1600年 / Elsevier Ltd卷 / 38期
关键词
Tensors;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A new Brauer-type Z-eigenvalue inclusion set for tensors
    Sang, Caili
    [J]. NUMERICAL ALGORITHMS, 2019, 80 (03) : 781 - 794
  • [22] Optimal Z-Eigenvalue Inclusion Intervals for Even Order Tensors and Their Applications
    Zhao, Jianxing
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2021, 174 (01)
  • [23] An Upper Bound for the Largest Eigenvalue of a Positive Semidefinite Block Banded Matrix
    Kolotilina L.Y.
    [J]. Journal of Mathematical Sciences, 2018, 232 (6) : 917 - 920
  • [24] Two S-type Z-eigenvalue inclusion sets for tensors
    Yanan Wang
    Gang Wang
    [J]. Journal of Inequalities and Applications, 2017
  • [25] New Z-eigenvalue inclusion theorem of tensors with application to the geometric measure of entanglement
    Jun He
    Yanmin Liu
    Qingyu Zeng
    [J]. Quantum Information Processing, 22
  • [26] New Z-eigenvalue inclusion theorem of tensors with application to the geometric measure of entanglement
    He, Jun
    Liu, Yanmin
    Zeng, Qingyu
    [J]. QUANTUM INFORMATION PROCESSING, 2023, 22 (03)
  • [27] Identifying the Positive Definiteness of Even-Order Weakly Symmetric Tensors via Z-Eigenvalue Inclusion Sets
    Shen, Feichao
    Zhang, Ying
    Wang, Gang
    [J]. SYMMETRY-BASEL, 2021, 13 (07):
  • [28] Z-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states
    Liang Xiong
    Jianzhou Liu
    [J]. Computational and Applied Mathematics, 2020, 39
  • [29] Z-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states
    Xiong, Liang
    Liu, Jianzhou
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [30] On the Z-Eigenvalue Bounds for a Tensor
    Li, Wen
    Liu, Weihui
    Vong, Seakweng
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (04) : 810 - 826