An Upper Bound for the Largest Eigenvalue of a Positive Semidefinite Block Banded Matrix

被引:0
|
作者
Kolotilina L.Y. [1 ]
机构
[1] St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg
关键词
D O I
10.1007/s10958-018-3918-6
中图分类号
学科分类号
摘要
The new upper boundλmax(A)≤∑k=1p+1i≡k(modp+1)maxλmax(Aii) for the largest eigenvalue of a Hermitian positive semidefinite block banded matrix A = (Aij) of block semibandwidth p is suggested. In the special case where the diagonal blocks of A are identity matrices, the latter bound reduces to the boundλ max(A) ≤ p+ 1 , depending on p only, which improves the bounds established for such matrices earlier and extends the boundλ max(A) ≤ 2 , old known for p = 1, i.e., for block tridiagonal matrices, to the general case p ≥ 1. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:917 / 920
页数:3
相关论文
共 50 条
  • [1] Upper bound for the largest Z-eigenvalue of positive tensors
    He, Jun
    Huang, Ting-Zhu
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 38 : 110 - 114
  • [2] Upper bound for the largest Z-eigenvalue of positive tensors
    [J]. He, J. (hejunfan1@163.com), 1600, Elsevier Ltd (38):
  • [3] Upper bound for the largest Z-eigenvalue of positive tensors
    He, Jun
    Huang, Ting-Zhu
    [J]. Applied Mathematics Letters, 2014, 38 : 110 - 114
  • [4] A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph
    Shu, JL
    Hong, Y
    Wen-Ren, K
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 (1-3) : 123 - 129
  • [5] An eigenvalue majorization inequality for positive semidefinite block matrices
    Lin, Minghua
    Wolkowicz, Henry
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12): : 1365 - 1368
  • [6] A NEW UPPER BOUND ON THE LARGEST NORMALIZED LAPLACIAN EIGENVALUE
    Rojo, Oscar
    Soto, Ricardo L.
    [J]. OPERATORS AND MATRICES, 2013, 7 (02): : 323 - 332
  • [7] AN INCOMPARABLE UPPER BOUND FOR THE LARGEST LAPLACIAN GRAPH EIGENVALUE
    Sorgun, Sezer
    [J]. ARS COMBINATORIA, 2017, 133 : 197 - 204
  • [8] NEW UPPER BOUND ON THE LARGEST LAPLACIAN EIGENVALUE OF GRAPHS
    Taheri, Hassan
    Fath-Tabar, Gholam Hossein
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (02): : 533 - 540
  • [9] The largest eigenvalue of a positive definite symmetric matrix
    Krafft, O
    Schaefer, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (10): : 922 - 923
  • [10] Eigenvalue majorization inequalities for positive semidefinite block matrices and their blocks
    Zhang, Yun
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 446 : 216 - 223