Revealing effects of pouch Li-ion battery structure on fast charging ability through numerical simulation

被引:0
|
作者
Cai, Jixiang [1 ,2 ]
Wei, Xuezhe [1 ,2 ]
Wang, Xueyuan [2 ,3 ]
Zhu, Jiangong [1 ,2 ]
Jiang, Bo [1 ,2 ]
Tao, Zhe [4 ]
Tian, Mengshu [1 ,2 ]
Dai, Haifeng [1 ,2 ]
机构
[1] School of Automotive Studies, Tongji University, Shanghai,201804, China
[2] Clean Energy Automotive Engineering Center, Tongji University, Shanghai,201804, China
[3] Department of Control Science and Engineering, Tongji University, Shanghai,201804, China
[4] School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai,200240, China
关键词
Sensitivity analysis;
D O I
10.1016/j.apenergy.2024.124438
中图分类号
学科分类号
摘要
Lithium plating may occur in lithium-ion batteries (LIBs) under extreme charging conditions, such as high C-rates and low temperatures, which compromises both the lifespan and safety of the batteries. Avoiding lithium plating is a critical topic in the design and management of LIBs. In the present work, a three-dimensional electrochemical model is established and validated to optimize the battery structure. Using the onset time of lithium plating as a quantitative index, the particle swarm optimization (PSO) algorithm is employed to identify the best and worst combinations of battery structures, including tab type, cell aspect ratio, and tab attachment positions. The results demonstrate that the onset time of lithium plating for the best structures in the three tab types is significantly delayed compared to the worst structures. Taking 2C charging as an example, there is an improvement of 28.57 %, 30.88 %, and 42.19 % for the normal type (NT), counter type (CT), and L-shaped type (LT), respectively. The differences in the degree of optimization among the three tab types are primarily observed in the worst structures, particularly in the worst structure of the LT type. Furthermore, the distributions of lithium plating overpotential and standard deviations are presented, indicating that optimizing battery structures can also significantly enhance the uniformity of lithium plating within the anode. Finally, the sensitivity analysis is conducted and the tab attachment positions are proved to be the most important factor among these variables. This work provides valuable insights into battery design and manufacturing with a focus on improving fast charging ability. © 2024
引用
收藏
相关论文
共 50 条
  • [11] The Puzzles in Fast Charging of Li-Ion Batteries
    Sheng Shui Zhang
    Energy & Environmental Materials , 2022, (04) : 1005 - 1007
  • [12] The Puzzles in Fast Charging of Li-Ion Batteries
    Zhang, Sheng Shui
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) : 1005 - 1007
  • [13] Splitting Algorithm for Numerical Simulation of Li-ion Battery Electrochemical Processes
    Iliev, Oleg
    Nikiforova, Marina A.
    Semenov, Yuri V.
    Zakharov, Petr E.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING (ICMM-2017), 2017, 1907
  • [14] Unveiling Capacity Degradation Mechanism of Li-ion Battery in Fast-charging Process
    Zhang, Sheng S.
    CHEMELECTROCHEM, 2020, 7 (02) : 555 - 560
  • [15] Effects of solvent formulations in electrolytes on fast charging of Li-ion cells
    Wu, Xianyang
    Liu, Tianyi
    Bai, Yaocai
    Feng, Xu
    Rahman, Muhammad Mominur
    Sun, Cheng-Jun
    Lin, Feng
    Zhao, Kejie
    Du, Zhijia
    ELECTROCHIMICA ACTA, 2020, 353 (353)
  • [16] An Experimental Survey of Li-Ion Battery Charging Methods
    AL-Refai, Abdullah
    Rawashdeh, Osamah
    Abousleiman, Rami
    SAE INTERNATIONAL JOURNAL OF ALTERNATIVE POWERTRAINS, 2016, 5 (01) : 23 - 29
  • [17] Identifying rate limitation and a guide to design of fast-charging Li-ion battery
    Zhang, Sheng S.
    INFOMAT, 2020, 2 (05) : 942 - 949
  • [18] A Li-ion Battery Charging Design for Biomedical Implants
    Huang, Chi-Chun
    Yen, Shou-Fu
    Wang, Chua-Chin
    2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2008), VOLS 1-4, 2008, : 400 - 403
  • [19] Decent Fast-Charging Performance of Li-Ion Battery Achieved by Modifying Electrolyte Formulation and Charging Protocol
    Zhang, Sheng S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (06)
  • [20] Effect of High-Temperature Thermal Management on Degradation of Li-Ion Battery for Fast Charging
    Park, Sang-Jun
    Song, Young-Woong
    Kang, Byeongsu
    Kang, Min-Jun
    Kim, Min-Young
    Choi, Yeong-Jun
    Lim, Jinsun
    Kim, Ho-Sung
    Hong, Youngsun
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 2912 - 2922