Decent Fast-Charging Performance of Li-Ion Battery Achieved by Modifying Electrolyte Formulation and Charging Protocol

被引:2
|
作者
Zhang, Sheng S. [1 ]
机构
[1] DEVCOM Army Res Lab, Battery Sci Branch, FCDD RLA GD, Adelphi, MD 20783 USA
关键词
TRANSPORT;
D O I
10.1149/1945-7111/acd819
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, two strategies have been attempted to achieve decent fast-charging performances of Li-ion batteries. The first is to combine lithium bis(fluorosulfonyl)imide (LiFSI) and dimethoxyethane (DME) into an electrolyte for high ionic conductivity of the bulk electrolyte and the electrolyte-electrode interphases, and the second is to limit charging capacity within 80% state-of-charge (SOC) for stable capacity retention by lowering charging rate without increasing total charging time in the standard constant current-constant voltage (CC-CV) charging protocol. It is found that using 5 wt% fluoroethylene carbonate (FEC) as an additive enables the hybridization of 20 wt% DME into the electrolyte without adverse effects on the initial formation cycles and ongoing cycling in terms of coulombic efficiency and reversible capacity, and adding 2 wt% LiPF6 is beneficial to reducing charge-transfer resistance and stabilizing capacity retention. As a result, decent fast-charging performances are obtained from the 200 mAh graphite/LiNi0.80Co0.15Al0.05O2 pouch cells by using a 1.2 m (molality) LiFSI 3:5:2 ethylene carbonate (EC)/ethylmethyl carbonate (EMC)/DME + 5% FEC + 2% LiPF6 electrolyte (all by wt) and a modified CC-CV charging protocol consisting of CC charging at 4 C for a total of 12 min, which is the charging time equivalent to a 5 C charging protocol.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Electrolyte Design for Fast-Charging Li-Ion Batteries
    Logan, E. R.
    Dahn, J. R.
    TRENDS IN CHEMISTRY, 2020, 2 (04): : 354 - 366
  • [2] A superconcentrated ether electrolyte for fast-charging Li-ion batteries
    Yamada, Yuki
    Yaegashi, Makoto
    Abe, Takeshi
    Yamada, Atsuo
    CHEMICAL COMMUNICATIONS, 2013, 49 (95) : 11194 - 11196
  • [3] A Figure of Merit for Fast-Charging Li-ion Battery Materials
    Xia, Huarong
    Zhang, Wei
    Cao, Shengkai
    Chen, Xiaodong
    ACS NANO, 2022, 16 (06) : 8525 - 8530
  • [4] Unveiling Capacity Degradation Mechanism of Li-ion Battery in Fast-charging Process
    Zhang, Sheng S.
    CHEMELECTROCHEM, 2020, 7 (02) : 555 - 560
  • [5] Identifying rate limitation and a guide to design of fast-charging Li-ion battery
    Zhang, Sheng S.
    INFOMAT, 2020, 2 (05) : 942 - 949
  • [6] Conformal Pressure and Fast-Charging Li-Ion Batteries
    Cao, Chuntian
    Steinrueck, Hans-Georg
    Paul, Partha P.
    Dunlop, Alison R.
    Trask, Stephen E.
    Jansen, Andrew N.
    Kasse, Robert M.
    Thampy, Vivek
    Yusuf, Maha
    Weker, Johanna Nelson
    Shyam, Badri
    Subbaraman, Ram
    Davis, Kelly
    Johnston, Christina M.
    Takacs, Christopher J.
    Toney, Michael F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (04)
  • [7] Safe and fast-charging Li-ion battery with long shelf life for power applications
    Zaghib, K.
    Dontigny, M.
    Guerfi, A.
    Charest, P.
    Rodrigues, I.
    Mauger, A.
    Julien, C. M.
    JOURNAL OF POWER SOURCES, 2011, 196 (08) : 3949 - 3954
  • [8] DISCOVERY AND DEVELOPMENT OF A FAST CHARGING LI-ION BATTERY
    Liu, Teng
    Yang, Xiao-Guang
    Wang, Chao-Yang
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 6A, 2019,
  • [9] Challenges and Strategies of Fast-Charging Li-Ion Batteries with a Focus on Li Plating
    Dong, Yongteng
    Chen, Yuanmao
    Zeng, Qinghui
    Feng, Jiayu
    Fang, Mingming
    Shi, Zhangqin
    Liu, Jijiang
    Sheng, Yeliang
    Yue, Xinyang
    Liang, Zheng
    ENERGY MATERIAL ADVANCES, 2024, 5
  • [10] Enhanced Electrolyte Transport and Kinetics Mitigate Graphite Exfoliation and Li Plating in Fast-Charging Li-Ion Batteries
    Gao, Hongpeng
    Yan, Qizhang
    Holoubek, John
    Yin, Yijie
    Bao, Wurigumula
    Liu, Haodong
    Baskin, Artem
    Li, Mingqian
    Cai, Guorui
    Li, Weikang
    Tran, Duc
    Liu, Ping
    Luo, Jian
    Meng, Ying Shirley
    Chen, Zheng
    ADVANCED ENERGY MATERIALS, 2023, 13 (05)