Smoothing Newton algorithm for nonlinear complementarity problem with a P* function

被引:0
|
作者
Liu, Danhong [1 ]
Huang, Tao [2 ]
Wang, Ping [1 ]
机构
[1] School of Sciences, Tianjin University, Tianjin 300072, China
[2] Department of Logistics Command and Engineering, Naval University of Engineering, Tianjin 300450, China
关键词
Algorithms - Convergence of numerical methods - Iterative methods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
页码:379 / 386
相关论文
共 50 条
  • [41] A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P 0-function
    Chen, Bilian
    Ma, Changfeng
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (03) : 473 - 495
  • [42] SMOOTHING NEWTON METHODS FOR SYMMETRIC CONE LINEAR COMPLEMENTARITY PROBLEM WITH THE CARTESIAN P/P0-PROPERTY
    Liu, Li-Xia
    Liu, San-Yang
    Wang, Chun-Feng
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (01) : 53 - 66
  • [43] A new smoothing quasi-Newton method for nonlinear complementarity problems
    Ma, CF
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (02) : 807 - 823
  • [44] A new smoothing quasi-Newton method for nonlinear complementarity problems
    Buhmiler, Sandra
    Krejic, Natasa
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 211 (02) : 141 - 155
  • [45] A new smoothing and regularization Newton method for the symmetric cone complementarity problem
    Ruijuan Liu
    Journal of Applied Mathematics and Computing, 2017, 55 : 79 - 97
  • [46] A REGULARIZED INEXACT SMOOTHING NEWTON METHOD FOR CIRCULAR CONE COMPLEMENTARITY PROBLEM
    Chi, Xiaoni
    Tao, Jiyuan
    Zhu, Zhibin
    Duan, Fujian
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 197 - 218
  • [47] A regularized smoothing Newton method for solving the symmetric cone complementarity problem
    Ma, Changfeng
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) : 2515 - 2527
  • [48] A smoothing Newton method for the second-order cone complementarity problem
    Tang, Jingyong
    He, Guoping
    Dong, Li
    Fang, Liang
    Zhou, Jinchuan
    APPLICATIONS OF MATHEMATICS, 2013, 58 (02) : 223 - 247
  • [49] A smoothing Newton method for the second-order cone complementarity problem
    Jingyong Tang
    Guoping He
    Li Dong
    Liang Fang
    Jinchuan Zhou
    Applications of Mathematics, 2013, 58 : 223 - 247
  • [50] A new smoothing and regularization Newton method for the symmetric cone complementarity problem
    Liu, Ruijuan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) : 79 - 97