A new smoothing quasi-Newton method for nonlinear complementarity problems

被引:7
|
作者
Buhmiler, Sandra [2 ]
Krejic, Natasa [1 ]
机构
[1] Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Fac Tech Sci, Novi Sad, Serbia
关键词
nonlinear complementarity problem; quasi-Newton; semismooth systems;
D O I
10.1016/j.cam.2006.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new smoothing quasi-Newton method for nonlinear complementarity problems is presented. The method is a generalization of Thomas' method for smooth nonlinear systems and has similar properties as Broyden's method. Local convergence is analyzed for a strictly complementary solution as well as for a degenerate solution. Presented numerical results demonstrate quite similar behavior of Thomas' and Broyden's methods. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 155
页数:15
相关论文
共 50 条
  • [1] A new smoothing quasi-Newton method for nonlinear complementarity problems
    Ma, CF
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (02) : 807 - 823
  • [2] Smoothing Newton and quasi-Newton methods for mixed complementarity problems
    Li, DH
    Fukushima, M
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 17 (2-3) : 203 - 230
  • [3] Smoothing Newton and Quasi-Newton Methods for Mixed Complementarity Problems
    Donghui Li
    Masao Fukushima
    [J]. Computational Optimization and Applications, 2000, 17 : 203 - 230
  • [4] A NONSMOOTH GLOBAL QUASI-NEWTON METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS
    Andres Arias, Carlos
    Jairo Martinez, Hector
    Perez, Rosana
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (01): : 1 - 15
  • [5] A Smoothing Newton method for Nonlinear Complementarity Problems
    Feng, Ning
    Tian, Zhi-yuan
    Qu, Xin-lei
    [J]. SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1090 - 1093
  • [6] A local smoothing quasi-Newton algorithm for solving nonlinear complementarity problem
    Quira, Camila
    Perez, Rosana
    Arenas, Flavian
    Correa, Diego
    [J]. UIS INGENIERIAS, 2023, 22 (04): : 147 - 163
  • [7] A smoothing Newton method for nonlinear complementarity problems
    Tang, Jingyong
    Dong, Li
    Zhou, Jinchuan
    Fang, Liang
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 107 - 118
  • [8] On the local convergence of quasi-Newton methods for nonlinear complementarity problems
    Lopes, VLR
    Martínez, JM
    Pérez, R
    [J]. APPLIED NUMERICAL MATHEMATICS, 1999, 30 (01) : 3 - 22
  • [9] A smoothing quasi-Newton method for solving general second-order cone complementarity problems
    Jingyong Tang
    Jinchuan Zhou
    [J]. Journal of Global Optimization, 2021, 80 : 415 - 438
  • [10] A smoothing quasi-Newton method for solving general second-order cone complementarity problems
    Tang, Jingyong
    Zhou, Jinchuan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (02) : 415 - 438