A new smoothing quasi-Newton method for nonlinear complementarity problems

被引:7
|
作者
Buhmiler, Sandra [2 ]
Krejic, Natasa [1 ]
机构
[1] Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Fac Tech Sci, Novi Sad, Serbia
关键词
nonlinear complementarity problem; quasi-Newton; semismooth systems;
D O I
10.1016/j.cam.2006.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new smoothing quasi-Newton method for nonlinear complementarity problems is presented. The method is a generalization of Thomas' method for smooth nonlinear systems and has similar properties as Broyden's method. Local convergence is analyzed for a strictly complementary solution as well as for a degenerate solution. Presented numerical results demonstrate quite similar behavior of Thomas' and Broyden's methods. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 155
页数:15
相关论文
共 50 条
  • [31] A Structured Secant Method Based on a New Quasi-Newton Equation for Nonlinear Least Squares Problems
    J. Z. Zhang
    Y. Xue
    K. Zhang
    [J]. BIT Numerical Mathematics, 2003, 43 : 217 - 229
  • [32] A modified quasi-Newton method for nonlinear equations
    Fang, Xiaowei
    Ni, Qin
    Zeng, Meilan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 328 : 44 - 58
  • [33] A structured secant method based on a new quasi-Newton equation for nonlinear least squares problems
    Zhang, JZ
    Xue, Y
    Zhang, K
    [J]. BIT, 2003, 43 (01): : 217 - 229
  • [34] A smoothing Newton method for symmetric cone complementarity problems
    Jia Tang
    Changfeng Ma
    [J]. Optimization Letters, 2015, 9 : 225 - 244
  • [35] A SMOOTHING NEWTON METHOD FOR TENSOR EIGENVALUE COMPLEMENTARITY PROBLEMS
    Hu, Wenyu
    Lu, Laishui
    Yin, Cheng
    Yu, Gaohang
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 243 - 253
  • [36] A quasi-Newton type method for equilibrium problems
    Leonardo A. Sousa
    Susana Scheimberg
    Pedro Jorge S. Santos
    Paulo Sérgio M. Santos
    [J]. Numerical Algorithms, 2022, 89 : 1129 - 1143
  • [37] A smoothing Newton method for symmetric cone complementarity problems
    Tang, Jia
    Ma, Changfeng
    [J]. OPTIMIZATION LETTERS, 2015, 9 (02) : 225 - 244
  • [38] A quasi-Newton type method for equilibrium problems
    Sousa, Leonardo A.
    Scheimberg, Susana
    Santos, Pedro Jorge S.
    Santos, Paulo Sergio M.
    [J]. NUMERICAL ALGORITHMS, 2022, 89 (03) : 1129 - 1143
  • [39] Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems
    L. Qi
    D. Sun
    [J]. Journal of Optimization Theory and Applications, 2002, 113 : 121 - 147
  • [40] Smoothing functions and smoothing Newton method for complementarity and variational inequality problems
    Qi, L
    Sun, D
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 113 (01) : 121 - 147